Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Under Construction.png Note: This page has not been verified by our editors.

Benchmark Model Overview

This page outlines the types of models that are used as benchmark systems. For this general summary we assume an input u : \mathbb{R} \to \mathbb{R}^M, a state x : \mathbb{R} \to \mathbb{R}^N and an output y : \mathbb{R} \to \mathbb{R}^Q.

Linear Time-Invariant System


\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with:

E \in \mathbb{R}^{N \times N}, A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}.


Linear Time-Varying System


\begin{align}
E(t)\dot{x}(t) &= A(t)x(t) + B(t)u(t),\\
y(t) &= C(t)x(t),
\end{align}

with:

E : \mathbb{R} \to \mathbb{R}^{N \times N}, A : \mathbb{R} \to \mathbb{R}^{N \times N}, B : \mathbb{R} \to \mathbb{R}^{N \times M}, C : \mathbb{R} \to \mathbb{R}^{Q \times N}.


Quadratic-Bilinear System


\begin{align}
 E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{i=1}^M x(t) u_i(t) + B u(t), \\
 y(t) &= Cx(t),
\end{align}

with:

E \in \mathbb{R}^{N \times N}, A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, H \in \mathbb{R}^{N \times N^2}, N_i \in \mathbb{R}^{N \times N}, C \in \mathbb{R}^{Q \times N}.


Nonlinear Time-Invariant System


\begin{align}
E\dot{x}(t) &= Ax(t) + f(x(t),u(t)) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with:

E \in \mathbb{R}^{N \times N}, A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}, f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N.


Affine Parametric Linear Time-Invariant System


\begin{align}
(E_0 + \sum_{i=1}^{P_E} p^E_i E_i)\dot{x}(t) &= (A_0 \sum_{j=1}^{P_A} p^A_j A_j) x(t) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with:

E_0 \in \mathbb{R}^{N \times N}, E_i \in \mathbb{R}^{N \times N}, A_0 \in \mathbb{R}^{N \times N}, A_j \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}.


Second-Order System


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
y(t) &= C x(t),
\end{align}

with:

M \in \mathbb{R}^{N \times N}, E \in \mathbb{R}^{N \times N}, K \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}.

Nonlinear Second-Order System


\begin{align}
M \ddot{x}(t) + D \dot{x}(t) + K x(t) &= B u(t) + f(x(t),u(t)), \\
y(t) &= C x(t),
\end{align}

with:

M \in \mathbb{R}^{N \times N}, D \in \mathbb{R}^{N \times N}, K \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}, f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N.


Affine Parametric Second-Order System


\begin{align}
(M_0 + \sum_{i=1}^{P_M} p^M_i M_i)\ddot{x}(t) + (D_0 + \sum_{i=1}^{P_D} p^D_i D_i)\dot{x}(t) + (K_0 + \sum_{i=1}^{P_K} p^K_i K_i)x(t) &= B u(t), \\
y(t) &= C x(t),
\end{align}

with:

M_0 \in \mathbb{R}^{N \times N}, M_i \in \mathbb{R}^{N \times N}, D_0 \in \mathbb{R}^{N \times N}, D_j \in \mathbb{R}^{N \times N}, K_0 \in \mathbb{R}^{N \times N}, K_k \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}.