Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Power system examples

Revision as of 00:52, 1 May 2013 by Himpe (talk | contribs) (equation indent)


1 Description

These first order systems are given in generalized state space form


E\dot{x}(t)=A x(t)+B u(t), \quad
y(t)=Cx(t)+Du(t),\quad E,A\in\mathbb{R}^{n\times n},~B\in\mathbb{R}^{n\times m},~C\in\mathbb{R}^{p\times n},~D\in\mathbb{R}^{p\times m}

and originated at CEPEL for simulating large power systems.

They come in different sizes and variants, including both SISO and MIMO systems having regular or singular E matrices. In the latter case the DAEs are of index 1 and using simple row and column permutations, E,A can be brought into the form


E=\left[ \begin{array}{cc}I_{n_f}&0\\0&0\end{array}\right],\quad A=\left[ \begin{array}{cc}A_{11}&A_{12}\\A_{21}&A_{22}\end{array}\right],

where n_f denotes the number of finite eigenvalues in \Lambda(A,E) and A_{22}\in\mathbb{R}^{n-n_f\times n-n_f} is regular. A complete overview over these systems can be found in table below. The power systems served as benchmark examples for Dominant Pole based Modal Truncation[1][2][3][4][5] and for a special adaption[6] of Balanced Truncation for the index-1 DAE systems.


2 Data

The table below lists the charateristics of all power systems. The files can be downloadet at https://sites.google.com/site/rommes/software.

Name n m p Type
New England 66 1 1 ODE
BIPS/97 13251 1 1 DAE
BIPS/1997 13250 1 1 DAE
BIPS/2007 21476 1 1 DAE
BIPS/97,MIMO8 13309 8 8 DAE
BIPS/97,MIMO28 13251 28 28 DAE
BIPS/97,MIMO46 13250 46 46 DAE
Juba5723 40337 2 1 DAE
Bauru5727 40366 2 2 DAE
zeros_nopss 13296 46 46 DAE
xingo6u 20738 1 6 DAE
nopss 11685 1 1 DAE
bips98_606 7135 4 4 DAE
bips98_1142 9735 4 4 DAE
bips98_1450 11305 4 4 DAE
bips07_1693 13275 4 4 DAE
bips07_1998 15066 4 4 DAE
bips07_2476 16861 4 4 DAE
bips07_3078 21128 4 4 DAE
PI Sections 20-80 ODE

3 References

<references> [1]

[2]

[3]

[4]

[6]

[5]

4 Contact

Joost Rommes User:kuerschner

  1. 1.0 1.1 N. Martins, L. Lima, and H. Pinto, "Computing dominant poles of power system transfer functions", IEEE Transactions on Power Systems, vol.11, no.1, pp.162-170, 1996
  2. 2.0 2.1 J. Rommes and N. Martins, "Efficient computation of transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.3, pp.1218-1226, 2006
  3. 3.0 3.1 J. Rommes and N. Martins, "Efficient computation of multivariable transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.4, pp.1471-1483, 2006
  4. 4.0 4.1 J. Rommes, "Methods for eigenvalue problems with applications in model order reduction", Ph.D. dissertation, Universiteit Utrecht, 2007.
  5. 5.0 5.1 P. Kürschner, "Two-sided eigenvalue methods for modal approximation”, Master’s thesis, Chemnitz University of Technology, Department of Mathematics, Germany, 2010.
  6. 6.0 6.1 F. Freitas, J. Rommes, and N. Martins, "Gramian-based reduction method applied to large sparse power system descriptor models" IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1258-1270, 2008.