Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki
Revision as of 20:59, 20 April 2023 by Lund (talk | contribs) (→‎Quadratic-Bilinear System: add acronym)


Benchmark Model Templates

This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, A always serves as the name of the component matrix applied to the state x(t) in a linear time-invariant system. For all models we assume an input u : \mathbb{R} \to \mathbb{R}^m, with components u_j, j = 1, \ldots, m, a state x : \mathbb{R} \to \mathbb{R}^n, and an output y : \mathbb{R} \to \mathbb{R}^q. For all parametric models, we assume each component has \ell parameters; in cases where a component has fewer than \ell parameters, the extras are treated as 0. Some benchmarks (e.g., Bone Model) have a constant forcing term, in which case, it is assumed that u(t) is identically 1.

Linear Time-Invariant First-Order System (LTI-FOS)


\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t),\\
y(t) &= Cx(t) + Du(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}.

Linear Time-Varying First-Order System (LTV-FOS)


\begin{align}
E(t)\dot{x}(t) &= A(t)x(t) + B(t)u(t),\\
y(t) &= C(t)x(t) + D(t)u(t),
\end{align}

with

E : \mathbb{R} \to \mathbb{R}^{n \times n}, A : \mathbb{R} \to \mathbb{R}^{n \times n}, B : \mathbb{R} \to \mathbb{R}^{n \times m}, C : \mathbb{R} \to \mathbb{R}^{q \times n}, D : \mathbb{R} \to \mathbb{R}^{q \times m}.

Quadratic-Bilinear System (QBS)


\begin{align}
 E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{j=1}^m N_j x(t) u_j(t) + B u(t), \\
 y(t) &= Cx(t) + Du(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times n^2}, N_j \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}.

Nonlinear Time-Invariant System


\begin{align}
E\dot{x}(t) &= Ax(t) + f(x(t),u(t)) + Bu(t),\\
y(t) &= Cx(t) + Du(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}, f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n.


Affine Parametric Linear Time-Invariant System


\begin{align}
(E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) &= (A + \sum_{i=1}^{\ell} p^A_i A_i) x(t) + (B + \sum_{i=1}^{\ell} p^B_i B_i)u(t),\\
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i)x(t),
\end{align}

with

E, E_i \in \mathbb{R}^{n \times n}; A, A_i \in \mathbb{R}^{n \times n}; B, B_i \in \mathbb{R}^{n \times m}; and C, C_i \in \mathbb{R}^{q \times n}, for all i = 1, \ldots, \ell.

Second-Order System


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
\end{align}

with

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C_p, C_v \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}.

When C_v = 0, we denote C = C_p.

Nonlinear Second-Order System


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t) + F f(x(t),u(t)), \\
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
\end{align}

with

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, F \in \mathbb{R}^{n \times n}, C_p, C_v \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}, f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n.

When C_v = 0, we denote C = C_p.

Affine Parametric Second-Order System


\begin{align}
(M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= (B + \sum_{i=1}^{\ell} p^B_i B_i) u(t), \\
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i) x(t),
\end{align}

with

M, M_i \in \mathbb{R}^{n \times n}; E, E_i \in \mathbb{R}^{n \times n}; K, K_i \in \mathbb{R}^{n \times n}; B, B_i \in \mathbb{R}^{n \times m}; and C, C_i \in \mathbb{R}^{q \times n}, for all i = 1, \ldots, \ell.