Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki
Revision as of 10:08, 26 June 2019 by Himpe (talk | contribs) (Stokes description init)

Under Construction.png Note: This page has not been verified by our editors.

Description

This benchmark presents the two-dimensional instationary Stokes equation, which models flow of an incompressible fluid in a domain. The associated partial differential equation system is given by:


\begin{align}
 \frac{\partial v}{\partial t} &= \Delta v - \nabla p + f, \qquad (x,t) \in \Omega \times (0,T] \\
 0 &= \operatorname{div} v, \\
 v &= 0, \qquad \qquad \qquad \quad \; (x,t) \in \partial \Omega \times (0,T]
\end{align}

with velocity variable v(x,t) and pressure variable \rho(x,t), on a spatial domain \Omega = [0,1] \times [0,1] \subset \mathbb{R}^2, and an external forcing term f. The boundary conditions are no-slip.

A finite difference discretization yields the descriptor system:


\begin{align}
 \begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{v}_h(t) \\ 0 \end{pmatrix} &= 
 \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^\intercal & 0 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix} +
 \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t) \\
 y(t)\quad & = \begin{bmatrix} C_1 \,\;&\;\, C_2 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix}
\end{align}

The matrix A_{11} matrix is the discretized Laplace operator, while A_{12} corresponds to the discrete gradient and divergence operators. For this benchmark the compound discretization of the boundary values and external forcing [B_1 \; B_2]^\intercal \in \mathbb{R}^{N \times 1} is chosen (uniformly) randomly, whereas the output matrix [C_1 \; C_2] \in \mathbb{R}^{1 \times N} is set to:


\begin{align}
 \begin{bmatrix} C_1 & C_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}.
\end{align}

Origin

Data

Dimensions

Citation

References

Contact

Christian Himpe