Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Under Construction.png Note: This page has not been verified by our editors.

Description

This benchmark presents the two-dimensional instationary Stokes equation, which models flow of an incompressible fluid in a domain [1],[2],[3],[4],[5]. The associated partial differential equation system is given by:


\begin{align}
 \frac{\partial v}{\partial t} &= \Delta v - \nabla p + f, \qquad (x,t) \in \Omega \times (0,T] \\
 0 &= \operatorname{div} v, \\
 v &= 0, \qquad \qquad \qquad \quad \; (x,t) \in \partial \Omega \times (0,T]
\end{align}

with velocity variable v(x,t) and pressure variable \rho(x,t), on a spatial domain \Omega = [0,1] \times [0,1] \subset \mathbb{R}^2, and an external forcing term f. The boundary conditions are no-slip.

A finite volume discretization on a uniform, staggered grid yields the descriptor system:


\begin{align}
 \begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{v}_h(t) \\ 0 \end{pmatrix} &= 
 \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^\intercal & 0 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix} +
 \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t) \\
 y(t)\quad & = \begin{bmatrix} C_1 \,\;&\;\, C_2 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix}
\end{align}

The matrix A_{11} matrix is the discretized Laplace operator, while A_{12} corresponds to the discrete gradient and divergence operators. For this benchmark the compound discretization of the boundary values and external forcing [B_1 \; B_2]^\intercal \in \mathbb{R}^{N \times 1} is chosen (uniformly) randomly, whereas the output matrix [C_1 \; C_2] \in \mathbb{R}^{1 \times N} is set to:


\begin{align}
 \begin{bmatrix} C_1 & C_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}.
\end{align}

Data

This is a procedural benchmark. A MATLAB m-file to generate E, A, B, C matrices can be found as part of the M.E.S.S project, under:

 DEMOS/models/stokes/stokes_ind2.m

Dimensions

System structure:


\begin{align}
E \dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t)
\end{align}

System dimensions:

E \in \mathbb{R}^{N \times N}, A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times 1}, C \in \mathbb{R}^{1 \times N}.

Citation

To cite this benchmark, use the following references:

  • For the benchmark itself and its data:
The MORwiki Community, Stokes equation. MORwiki - Model Order Reduction Wiki, 2018. https://modelreduction.org/morwiki/Stokes_equation
@MISC{morwiki_stokes,
  author =       {{The MORwiki Community}},
  title =        {Stokes equation},
  howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  url =          {https://modelreduction.org/morwiki/Stokes_equation},
  year =         {20XX}
}
  • For the background on the benchmark:
@PHDTHESIS{Sch07,
  author =       {M.Schmidt},
  title =        {Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems},
  school =       {TU Berlin},
  year =         {2007},
  doi =          {10.14279/depositonce-1600}
}

References

  1. T. Stykel. Balanced truncation model reduction for descriptor systems, Proceedings in Applied Mathematics and Mechanics 3: 5--8, 2003.
  2. T. Stykel. Gramian-Based Model Reduction for Descriptor System, Mathematics of Control, Signals, and Systems 16(4): 297--319, 2004.
  3. V. Mehrmann, T. Stykel. Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 83--115, 2005.
  4. T. Stykel. Balanced Truncation model reduction for semidiscretized Stokes equation, Linear Algebra and its Application 415(2--3): 262--289, 2006.
  5. M.Schmidt. Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems, Ph.D. thesis, TU Berlin, 2007.

Contact

Christian Himpe