Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Flexible Space Structures

Revision as of 14:22, 22 August 2018 by Himpe (talk | contribs) (added procedural cat)

Under Construction.png Note: This page has not been verified by our editors.

Description

The flexible space structure benchmark [1],[2],[3] is a procedural modal model which represents structural dynamics with a selectable number actuators and sensors. This model is used for truss structures in space environments i.e. the COFS-1 (Control of Flexible Structures) mast flight experiment [4],[5].

Model

In modal form the flexible space structure model for K modes, M actuators and Q sensors is of second order and given by:

\ddot{\nu}(t) = (2 \xi \circ \omega) \circ \dot{\nu}(t) + (\omega \circ \omega) \circ \nu = Bu(t)
y(t) = C_r\dot{\nu}(t) + C_d\nu(t)

with the parameters \xi \in \mathbb{R}_{>0}^K (damping ratio), \omega \in \mathbb{R}_{>0}^K (natural frequency) and using the Hadamard product \circ. The first order representation follows for x(t) = (\dot{\nu}(t), \omega_1\nu_1, \dots, \omega_K\nu_K) by:

\dot{x}(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

with the matrices:

A := \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_K \end{pmatrix}, \; B := \begin{pmatrix} B_1 \\ \vdots \\ B_K \end{pmatrix}, \; C := \begin{pmatrix} C_1 & \dots & C_K \end{pmatrix},

and their components:

A_k := \begin{pmatrix} -2\xi_k\omega_k & -\omega_k \\ \omega_k & 0 \end{pmatrix}, \; B_k := \begin{pmatrix} b_k \\ 0 \end{pmatrix}, \; C_k := \begin{pmatrix} c_{rk} & \frac{c_{dk}}{\omega_k} \end{pmatrix},

where b_k \in \mathbb{R}^{1 \times M} and c_{rk}, c_{dk} \in \mathbb{R}^{Q \times 1}.


Benchmark Specifics

For this benchmark the system matrix is block diagonal and thus chosen to be sparse. The parameters \xi and \omega are sampled from a uniform random distributions \mathcal{U}_{[0,\frac{1}{1000}]}^K and \mathcal{U}_{[0,100]}^K respectively. The components of the input matrix b_k are sampled form a uniform random distribution \mathcal{U}_{[0,1]}, while the output matrix C is sampled from a uniform random distribution \mathcal{U}_{[0,10]} completely w.l.o.g, since if the components of C_d are random their scaling can be ignored.


Data

The following Matlab code assembles the above described A, B and C matrix for a given number of modes K, actuators (inputs) M and sensors (outputs) Q.

function [A,B,C] = fss(K,M,Q)

    rand('seed',1009);
    xi = rand(1,K)*0.001;	% Sample damping ratio
    omega = rand(1,K)*100.0;	% Sample natural frequencies

    A_k = cellfun(@(p) sparse([-2.0*p(1)*p(2),-p(2);p(2),0]), ...
                  num2cell([xi;omega],1),'UniformOutput',0);

    A = blkdiag(A_k{:});

    B = kron(rand(K,M),[1;0]);

    C = 10.0*rand(Q,2*K);
end

Dimensions

System structure:


\begin{align}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t)
\end{align}

System dimensions:

A \in \mathbb{R}^{2K \times 2K}, B \in \mathbb{R}^{2K \times M}, C \in \mathbb{R}^{Q \times 2K}.

Citation

To cite this benchmark, use the following references:

  • For the benchmark itself and its data:
The MORwiki Community, Flexible Space Structures. MORwiki - Model Order Reduction Wiki, 2018. http://modelreduction.org/index.php/Flexible_Space_Structures
@MISC{morwiki-flexspacstruc,
  author =       {{The MORwiki Community}},
  title =        {Flexible Space Structures},
  howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  url =          {http://modelreduction.org/index.php/Flexible_Space_Structures},
  year =         2018
}

Reference

  1. W. Gawronski and J.N. Juang. "Model Reduction for Flexible Structures", Control and Dynamic Systems, 36: 143--222, 1990.
  2. W. Gawronski and T. Williams, "Model Reduction for Flexible Space Structures", Journal of Guidance 14(1): 68--76, 1991
  3. W. Gawronski. "Model reduction". In: Balanced Control of Flexible Structures. Lecture Notes in Control and Information Sciences, vol 211: 45--106, 1996.
  4. G.C. Horner. "COFS-1 Research Overview". NASA / DOD Control Structures Interaction Technology: 233--251, 1986
  5. L.G. Horta, J.L. Walsh, G.C. Horner and J.P. Bailey. "Analysis and simulation of the MAST (COFS-1 flight hardware)". NASA / DOD Control Structures Interaction Technology: 515--532, 1986.

Contact

Christian Himpe