Description
The flexible space structure benchmark [1],[2],[3] is a procedural modal model which represents structural dynamics with a selectable number actuators and sensors. This model is used for truss structures in space environments i.e. the COFS-1 (Control of Flexible Structures) mast flight experiment [4],[5].
Model
In modal form the flexible space structure model for \(K\) modes, \(M\) actuators and \(Q\) sensors is of second order and given by:
\[\ddot{\nu}(t) = (2 \xi \circ \omega) \circ \dot{\nu}(t) + (\omega \circ \omega) \circ \nu = Bu(t)\]
\[y(t) = C_r\dot{\nu}(t) + C_d\nu(t)\]
with the parameters \(\xi \in \mathbb{R}_{>0}^K\) (damping ratio), \(\omega \in \mathbb{R}_{>0}^K\) (natural frequency) and using the Hadamard product \(\circ\). The first order representation follows for \(x(t) = (\dot{\nu}(t), \omega_1\nu_1, \dots, \omega_K\nu_K)\) by:
\[\dot{x}(t) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t)\]
with the matrices:
\[A := \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_K \end{pmatrix}, \; B := \begin{pmatrix} B_1 \\ \vdots \\ B_K \end{pmatrix}, \; C := \begin{pmatrix} C_1 & \dots & C_K \end{pmatrix}, \]
and their components:
\[A_k := \begin{pmatrix} -2\xi_k\omega_k & -\omega_k \\ \omega_k & 0 \end{pmatrix}, \; B_k := \begin{pmatrix} b_k \\ 0 \end{pmatrix}, \; C_k := \begin{pmatrix} c_{rk} & \frac{c_{dk}}{\omega_k} \end{pmatrix},\]
where \(b_k \in \mathbb{R}^{1 \times M}\) and \(c_{rk}, c_{dk} \in \mathbb{R}^{Q \times 1}\).
Benchmark Specifics
For this benchmark the system matrix is block diagonal and thus chosen to be sparse. The parameters \(\xi\) and \(\omega\) are sampled from a uniform random distributions \(\mathcal{U}_{[0,\frac{1}{1000}]}^K\) and \(\mathcal{U}_{[0,100]}^K\) respectively. The components of the input matrix \(b_k\) are sampled form a uniform random distribution \(\mathcal{U}_{[0,1]}\), while the output matrix \(C\) is sampled from a uniform random distribution \(\mathcal{U}_{[0,10]}\) completely w.l.o.g, since if the components of \(C_d\) are random their scaling can be ignored.
Data
The following Matlab code assembles the above described \(A\), \(B\) and \(C\) matrix for a given number of modes \(K\), actuators (inputs) \(M\) and sensors (outputs) \(Q\).
function [A,B,C] = fss(K,M,Q)
rand('seed',1009);
xi = rand(1,K)*0.001; % Sample damping ratio
omega = rand(1,K)*100.0; % Sample natural frequencies
A_k = cellfun(@(p) sparse([-2.0*p(1)*p(2),-p(2);p(2),0]), ...
num2cell([xi;omega],1),'UniformOutput',0);
A = blkdiag(A_k{:});
B = kron(rand(K,M),[1;0]);
C = 10.0*rand(Q,2*K);
end
Dimensions
System structure: \[ \begin{align} \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{align} \]
System dimensions\[A \in \mathbb{R}^{2K \times 2K}\], \(B \in \mathbb{R}^{2K \times M}\), \(C \in \mathbb{R}^{Q \times 2K}\).
Citation
To cite this benchmark, use the following references:
- For the benchmark itself and its data:
- The MORwiki Community, Flexible Space Structures. MORwiki - Model Order Reduction Wiki, 2018. http://modelreduction.org/index.php/Flexible_Space_Structures
@MISC{morwiki-flexspacstruc,
author = {{The MORwiki Community}},
title = {Flexible Space Structures},
howpublished = {{MORwiki} -- Model Order Reduction Wiki},
url = {https://modelreduction.org/morwiki/Flexible_Space_Structures},
year = 2018
}
Reference
- ↑ W. Gawronski and J.N. Juang. "Model Reduction for Flexible Structures", Control and Dynamic Systems, 36: 143--222, 1990.
- ↑ W. Gawronski and T. Williams, "Model Reduction for Flexible Space Structures", Journal of Guidance 14(1): 68--76, 1991
- ↑ W. Gawronski. "Model reduction". In: Balanced Control of Flexible Structures. Lecture Notes in Control and Information Sciences, vol 211: 45--106, 1996.
- ↑ G.C. Horner. "COFS-1 Research Overview". NASA / DOD Control Structures Interaction Technology: 233--251, 1986
- ↑ L.G. Horta, J.L. Walsh, G.C. Horner and J.P. Bailey. "Analysis and simulation of the MAST (COFS-1 flight hardware)". NASA / DOD Control Structures Interaction Technology: 515--532, 1986.