Line 119: | Line 119: | ||
:<math> |
:<math> |
||
\begin{align} |
\begin{align} |
||
− | M \ddot{x}(t) + |
+ | M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t) + f(x(t),u(t)), \\ |
y(t) &= C x(t), |
y(t) &= C x(t), |
||
\end{align} |
\end{align} |
||
Line 127: | Line 127: | ||
<math>M \in \mathbb{R}^{N \times N}</math>, |
<math>M \in \mathbb{R}^{N \times N}</math>, |
||
− | <math> |
+ | <math>E \in \mathbb{R}^{N \times N}</math>, |
<math>K \in \mathbb{R}^{N \times N}</math>, |
<math>K \in \mathbb{R}^{N \times N}</math>, |
||
<math>B \in \mathbb{R}^{N \times M}</math>, |
<math>B \in \mathbb{R}^{N \times M}</math>, |
||
<math>C \in \mathbb{R}^{Q \times N}</math>, |
<math>C \in \mathbb{R}^{Q \times N}</math>, |
||
<math>f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N</math>. |
<math>f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N</math>. |
||
− | |||
===Affine Parametric Second-Order System=== |
===Affine Parametric Second-Order System=== |
Revision as of 12:50, 9 February 2019
Note: This page has not been verified by our editors.
Benchmark Model Overview
This page outlines the types of models that are used as benchmark systems.
For this general summary we assume an input ,
a state
and an output
.
Linear Time-Invariant System
with:
,
,
,
.
Linear Time-Varying System
with:
,
,
,
.
Quadratic-Bilinear System
with:
,
,
,
,
,
.
Nonlinear Time-Invariant System
with:
,
,
,
,
.
Affine Parametric Linear Time-Invariant System
with:
,
,
,
,
,
.
Second-Order System
with:
,
,
,
,
.
Nonlinear Second-Order System
with:
,
,
,
,
,
.
Affine Parametric Second-Order System
with:
,
,
,
,
,
,
,
.