Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Models"

(→‎Nonlinear Second-Order System: add F matrix to nonlinear term (see Electrostatic Beam))
m (standardize parameter indices; clean up how u_j is defined; revert Q back to H for QBS)
Line 1: Line 1:
 
{{preliminary}} <!-- Do not remove -->
 
{{preliminary}} <!-- Do not remove -->
   
[[Category:Miscellaneous]]
+
[[Category:Benchmarks]]
   
==Benchmark Model Overview==
+
==Benchmark Model Templates==
  +
This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, <math>A</math> always serves as the name of the component matrix applied to the state <math>x(t)</math> in a linear time-invariant system.
This page outlines the types of models that are used as benchmark systems.
 
For this general summary we assume an input <math>u : \mathbb{R} \to \mathbb{R}^m</math>,
+
For all models we assume an input <math>u : \mathbb{R} \to \mathbb{R}^m</math>, with components <math>u_j, j = 1, \ldots, m</math>,
a state <math>x : \mathbb{R} \to \mathbb{R}^n</math> and an output <math>y : \mathbb{R} \to \mathbb{R}^q</math>.
+
a state <math>x : \mathbb{R} \to \mathbb{R}^n</math>,
 
and an output <math>y : \mathbb{R} \to \mathbb{R}^q</math>.
   
 
===Linear Time-Invariant System===
 
===Linear Time-Invariant System===
Line 17: Line 18:
 
</math>
 
</math>
   
with:
+
with
   
 
<math>E \in \mathbb{R}^{n \times n}</math>,
 
<math>E \in \mathbb{R}^{n \times n}</math>,
Line 34: Line 35:
 
</math>
 
</math>
   
with:
+
with
   
 
<math>E : \mathbb{R} \to \mathbb{R}^{n \times n}</math>,
 
<math>E : \mathbb{R} \to \mathbb{R}^{n \times n}</math>,
Line 46: Line 47:
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
E\dot{x}(t) &= A x(t) + Q x(t) \otimes x(t) + \sum_{i=1}^M N_i x(t) u_i(t) + B u(t), \\
+
E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{j=1}^m N_j x(t) u_j(t) + B u(t), \\
 
y(t) &= Cx(t),
 
y(t) &= Cx(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
 
<math>E \in \mathbb{R}^{n \times n}</math>,
 
<math>E \in \mathbb{R}^{n \times n}</math>,
 
<math>A \in \mathbb{R}^{n \times n}</math>,
 
<math>A \in \mathbb{R}^{n \times n}</math>,
<math>Q \in \mathbb{R}^{n \times n^2}</math>,
+
<math>H \in \mathbb{R}^{n \times n^2}</math>,
<math>N_i \in \mathbb{R}^{n \times n}</math>,
+
<math>N_j \in \mathbb{R}^{n \times n}</math>,
<math>u_i: \mathbb{R} \to \mathbb{R}</math>,
 
 
<math>B \in \mathbb{R}^{n \times m}</math>,
 
<math>B \in \mathbb{R}^{n \times m}</math>,
 
<math>C \in \mathbb{R}^{q \times n}</math>.
 
<math>C \in \mathbb{R}^{q \times n}</math>.
Line 70: Line 70:
 
</math>
 
</math>
   
with:
+
with
   
 
<math>E \in \mathbb{R}^{n \times n}</math>,
 
<math>E \in \mathbb{R}^{n \times n}</math>,
Line 83: Line 83:
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
(E_0 + \sum_{j=1}^{P_E} p^E_j E_j)\dot{x}(t) &= (A_0 + \sum_{i=1}^{P_A} p^A_i A_i) x(t) + Bu(t),\\
+
(E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) &= (A + \sum_{i=1}^{\ell} p^A_i A_i) x(t) + Bu(t),\\
 
y(t) &= Cx(t),
 
y(t) &= Cx(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
<math>E_0 \in \mathbb{R}^{n \times n}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>E_j \in \mathbb{R}^{n \times n}</math>,
+
<math>E_i \in \mathbb{R}^{n \times n}</math>,
<math>A_0 \in \mathbb{R}^{n \times n}</math>,
+
<math>A \in \mathbb{R}^{n \times n}</math>,
 
<math>A_i \in \mathbb{R}^{n \times n}</math>,
 
<math>A_i \in \mathbb{R}^{n \times n}</math>,
 
<math>B \in \mathbb{R}^{n \times m}</math>,
 
<math>B \in \mathbb{R}^{n \times m}</math>,
Line 106: Line 106:
 
</math>
 
</math>
   
with:
+
with
   
 
<math>M \in \mathbb{R}^{n \times n}</math>,
 
<math>M \in \mathbb{R}^{n \times n}</math>,
Line 123: Line 123:
 
</math>
 
</math>
   
with:
+
with
   
 
<math>M \in \mathbb{R}^{n \times n}</math>,
 
<math>M \in \mathbb{R}^{n \times n}</math>,
Line 137: Line 137:
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
(M_0 + \sum_{i=1}^{P_M} p^M_i M_i)\ddot{x}(t) + (E_0 + \sum_{j=1}^{P_E} p^E_j E_j)\dot{x}(t) + (K_0 + \sum_{k=1}^{P_K} p^K_k K_k)x(t) &= B u(t), \\
+
(M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= B u(t), \\
 
y(t) &= C x(t),
 
y(t) &= C x(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
<math>M_0 \in \mathbb{R}^{n \times n}</math>,
+
<math>M \in \mathbb{R}^{n \times n}</math>,
 
<math>M_i \in \mathbb{R}^{n \times n}</math>,
 
<math>M_i \in \mathbb{R}^{n \times n}</math>,
<math>E_0 \in \mathbb{R}^{n \times n}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>E_j \in \mathbb{R}^{n \times n}</math>,
+
<math>E_i \in \mathbb{R}^{n \times n}</math>,
<math>K_0 \in \mathbb{R}^{n \times n}</math>,
+
<math>K \in \mathbb{R}^{n \times n}</math>,
<math>K_k \in \mathbb{R}^{n \times n}</math>,
+
<math>K_i \in \mathbb{R}^{n \times n}</math>,
 
<math>B \in \mathbb{R}^{n \times m}</math>,
 
<math>B \in \mathbb{R}^{n \times m}</math>,
 
<math>C \in \mathbb{R}^{q \times n}</math>.
 
<math>C \in \mathbb{R}^{q \times n}</math>.

Revision as of 15:33, 25 August 2022

Under Construction.png Note: This page has not been verified by our editors.

Benchmark Model Templates

This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, A always serves as the name of the component matrix applied to the state x(t) in a linear time-invariant system. For all models we assume an input u : \mathbb{R} \to \mathbb{R}^m, with components u_j, j = 1, \ldots, m, a state x : \mathbb{R} \to \mathbb{R}^n, and an output y : \mathbb{R} \to \mathbb{R}^q.

Linear Time-Invariant System


\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.


Linear Time-Varying System


\begin{align}
E(t)\dot{x}(t) &= A(t)x(t) + B(t)u(t),\\
y(t) &= C(t)x(t),
\end{align}

with

E : \mathbb{R} \to \mathbb{R}^{n \times n}, A : \mathbb{R} \to \mathbb{R}^{n \times n}, B : \mathbb{R} \to \mathbb{R}^{n \times m}, C : \mathbb{R} \to \mathbb{R}^{q \times n}.


Quadratic-Bilinear System


\begin{align}
 E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{j=1}^m N_j x(t) u_j(t) + B u(t), \\
 y(t) &= Cx(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times n^2}, N_j \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.

Nonlinear Time-Invariant System


\begin{align}
E\dot{x}(t) &= Ax(t) + f(x(t),u(t)) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n.


Affine Parametric Linear Time-Invariant System


\begin{align}
(E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) &= (A + \sum_{i=1}^{\ell} p^A_i A_i) x(t) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, E_i \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, A_i \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.

Second-Order System


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
y(t) &= C x(t),
\end{align}

with

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.

Nonlinear Second-Order System


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t) + F f(x(t),u(t)), \\
y(t) &= C x(t),
\end{align}

with

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, F \in \mathbb{R}^{n \times n}, C \in \mathbb{R}^{q \times n}, f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n.

Affine Parametric Second-Order System


\begin{align}
(M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= B u(t), \\
y(t) &= C x(t),
\end{align}

with

M \in \mathbb{R}^{n \times n}, M_i \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, E_i \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, K_i \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.