Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Models"

(→‎Quadratic-Bilinear System: correct notation following https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/nla.2200 ; replace H with Q (to avoid issues with H-norms and transfer functions down the line))
(change dimensions to lowercase (reserve uppercase for matrices); make u_i scalar function for QBS (following https://onlinelibrary.wiley.com/doi/am-pdf/10.1002/nla.2200 ))
Line 5: Line 5:
 
==Benchmark Model Overview==
 
==Benchmark Model Overview==
 
This page outlines the types of models that are used as benchmark systems.
 
This page outlines the types of models that are used as benchmark systems.
For this general summary we assume an input <math>u : \mathbb{R} \to \mathbb{R}^M</math>,
+
For this general summary we assume an input <math>u : \mathbb{R} \to \mathbb{R}^m</math>,
a state <math>x : \mathbb{R} \to \mathbb{R}^N</math> and an output <math>y : \mathbb{R} \to \mathbb{R}^Q</math>.
+
a state <math>x : \mathbb{R} \to \mathbb{R}^n</math> and an output <math>y : \mathbb{R} \to \mathbb{R}^q</math>.
   
 
===Linear Time-Invariant System===
 
===Linear Time-Invariant System===
Line 19: Line 19:
 
with:
 
with:
   
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>A \in \mathbb{R}^{N \times N}</math>,
+
<math>A \in \mathbb{R}^{n \times n}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>.
+
<math>C \in \mathbb{R}^{q \times n}</math>.
   
   
Line 36: Line 36:
 
with:
 
with:
   
<math>E : \mathbb{R} \to \mathbb{R}^{N \times N}</math>,
+
<math>E : \mathbb{R} \to \mathbb{R}^{n \times n}</math>,
<math>A : \mathbb{R} \to \mathbb{R}^{N \times N}</math>,
+
<math>A : \mathbb{R} \to \mathbb{R}^{n \times n}</math>,
<math>B : \mathbb{R} \to \mathbb{R}^{N \times M}</math>,
+
<math>B : \mathbb{R} \to \mathbb{R}^{n \times m}</math>,
<math>C : \mathbb{R} \to \mathbb{R}^{Q \times N}</math>.
+
<math>C : \mathbb{R} \to \mathbb{R}^{q \times n}</math>.
   
   
Line 53: Line 53:
 
with:
 
with:
   
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>A \in \mathbb{R}^{N \times N}</math>,
+
<math>A \in \mathbb{R}^{n \times n}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>Q \in \mathbb{R}^{n \times n^2}</math>,
<math>Q \in \mathbb{R}^{N \times N^2}</math>,
+
<math>N_i \in \mathbb{R}^{n \times n}</math>,
<math>N_i \in \mathbb{R}^{N \times N}</math>,
+
<math>u_i: \mathbb{R} \to \mathbb{R}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>.
+
<math>B \in \mathbb{R}^{n \times m}</math>,
  +
<math>C \in \mathbb{R}^{q \times n}</math>.
   
 
===Nonlinear Time-Invariant System===
 
===Nonlinear Time-Invariant System===
Line 71: Line 72:
 
with:
 
with:
   
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>A \in \mathbb{R}^{N \times N}</math>,
+
<math>A \in \mathbb{R}^{n \times n}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>,
+
<math>C \in \mathbb{R}^{q \times n}</math>,
 
<math>f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N</math>.
 
<math>f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N</math>.
   
Line 89: Line 90:
 
with:
 
with:
   
<math>E_0 \in \mathbb{R}^{N \times N}</math>,
+
<math>E_0 \in \mathbb{R}^{n \times n}</math>,
<math>E_j \in \mathbb{R}^{N \times N}</math>,
+
<math>E_j \in \mathbb{R}^{n \times n}</math>,
<math>A_0 \in \mathbb{R}^{N \times N}</math>,
+
<math>A_0 \in \mathbb{R}^{n \times n}</math>,
<math>A_i \in \mathbb{R}^{N \times N}</math>,
+
<math>A_i \in \mathbb{R}^{n \times n}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>.
+
<math>C \in \mathbb{R}^{q \times n}</math>.
   
 
===Second-Order System===
 
===Second-Order System===
Line 107: Line 108:
 
with:
 
with:
   
<math>M \in \mathbb{R}^{N \times N}</math>,
+
<math>M \in \mathbb{R}^{n \times n}</math>,
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>K \in \mathbb{R}^{N \times N}</math>,
+
<math>K \in \mathbb{R}^{n \times n}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>.
+
<math>C \in \mathbb{R}^{q \times n}</math>.
   
 
===Nonlinear Second-Order System===
 
===Nonlinear Second-Order System===
Line 124: Line 125:
 
with:
 
with:
   
<math>M \in \mathbb{R}^{N \times N}</math>,
+
<math>M \in \mathbb{R}^{n \times n}</math>,
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>K \in \mathbb{R}^{N \times N}</math>,
+
<math>K \in \mathbb{R}^{n \times n}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>,
+
<math>C \in \mathbb{R}^{q \times n}</math>,
 
<math>f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N</math>.
 
<math>f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N</math>.
   
Line 142: Line 143:
 
with:
 
with:
   
<math>M_0 \in \mathbb{R}^{N \times N}</math>,
+
<math>M_0 \in \mathbb{R}^{n \times n}</math>,
<math>M_i \in \mathbb{R}^{N \times N}</math>,
+
<math>M_i \in \mathbb{R}^{n \times n}</math>,
<math>E_0 \in \mathbb{R}^{N \times N}</math>,
+
<math>E_0 \in \mathbb{R}^{n \times n}</math>,
<math>E_j \in \mathbb{R}^{N \times N}</math>,
+
<math>E_j \in \mathbb{R}^{n \times n}</math>,
<math>K_0 \in \mathbb{R}^{N \times N}</math>,
+
<math>K_0 \in \mathbb{R}^{n \times n}</math>,
<math>K_k \in \mathbb{R}^{N \times N}</math>,
+
<math>K_k \in \mathbb{R}^{n \times n}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>.
+
<math>C \in \mathbb{R}^{q \times n}</math>.

Revision as of 11:10, 9 August 2022

Under Construction.png Note: This page has not been verified by our editors.

Benchmark Model Overview

This page outlines the types of models that are used as benchmark systems. For this general summary we assume an input u : \mathbb{R} \to \mathbb{R}^m, a state x : \mathbb{R} \to \mathbb{R}^n and an output y : \mathbb{R} \to \mathbb{R}^q.

Linear Time-Invariant System


\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with:

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.


Linear Time-Varying System


\begin{align}
E(t)\dot{x}(t) &= A(t)x(t) + B(t)u(t),\\
y(t) &= C(t)x(t),
\end{align}

with:

E : \mathbb{R} \to \mathbb{R}^{n \times n}, A : \mathbb{R} \to \mathbb{R}^{n \times n}, B : \mathbb{R} \to \mathbb{R}^{n \times m}, C : \mathbb{R} \to \mathbb{R}^{q \times n}.


Quadratic-Bilinear System


\begin{align}
 E\dot{x}(t) &= A x(t) + Q x(t) \otimes x(t) + \sum_{i=1}^M N_i x(t) u_i(t) + B u(t), \\
 y(t) &= Cx(t),
\end{align}

with:

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, Q \in \mathbb{R}^{n \times n^2}, N_i \in \mathbb{R}^{n \times n}, u_i: \mathbb{R} \to \mathbb{R}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.

Nonlinear Time-Invariant System


\begin{align}
E\dot{x}(t) &= Ax(t) + f(x(t),u(t)) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with:

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N.


Affine Parametric Linear Time-Invariant System


\begin{align}
(E_0 + \sum_{j=1}^{P_E} p^E_j E_j)\dot{x}(t) &= (A_0 + \sum_{i=1}^{P_A} p^A_i A_i) x(t) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with:

E_0 \in \mathbb{R}^{n \times n}, E_j \in \mathbb{R}^{n \times n}, A_0 \in \mathbb{R}^{n \times n}, A_i \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.

Second-Order System


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
y(t) &= C x(t),
\end{align}

with:

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.

Nonlinear Second-Order System


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t) + f(x(t),u(t)), \\
y(t) &= C x(t),
\end{align}

with:

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N.

Affine Parametric Second-Order System


\begin{align}
(M_0 + \sum_{i=1}^{P_M} p^M_i M_i)\ddot{x}(t) + (E_0 + \sum_{j=1}^{P_E} p^E_j E_j)\dot{x}(t) + (K_0 + \sum_{k=1}^{P_K} p^K_k K_k)x(t) &= B u(t), \\
y(t) &= C x(t),
\end{align}

with:

M_0 \in \mathbb{R}^{n \times n}, M_i \in \mathbb{R}^{n \times n}, E_0 \in \mathbb{R}^{n \times n}, E_j \in \mathbb{R}^{n \times n}, K_0 \in \mathbb{R}^{n \times n}, K_k \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}.