Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Models"

m (→‎Affine Parametric Second-Order System: actually make indices uniform)
m (→‎Affine Parametric Linear Time-Invariant System: make indices uniform; add + after A_0)
Line 83: Line 83:
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
(E_0 + \sum_{i=1}^{P_E} p^E_i E_i)\dot{x}(t) &= (A_0 \sum_{j=1}^{P_A} p^A_j A_j) x(t) + Bu(t),\\
+
(E_0 + \sum_{j=1}^{P_E} p^E_j E_j)\dot{x}(t) &= (A_0 + \sum_{i=1}^{P_A} p^A_i A_i) x(t) + Bu(t),\\
 
y(t) &= Cx(t),
 
y(t) &= Cx(t),
 
\end{align}
 
\end{align}
Line 91: Line 91:
   
 
<math>E_0 \in \mathbb{R}^{N \times N}</math>,
 
<math>E_0 \in \mathbb{R}^{N \times N}</math>,
<math>E_i \in \mathbb{R}^{N \times N}</math>,
+
<math>E_j \in \mathbb{R}^{N \times N}</math>,
 
<math>A_0 \in \mathbb{R}^{N \times N}</math>,
 
<math>A_0 \in \mathbb{R}^{N \times N}</math>,
<math>A_j \in \mathbb{R}^{N \times N}</math>,
+
<math>A_i \in \mathbb{R}^{N \times N}</math>,
 
<math>B \in \mathbb{R}^{N \times M}</math>,
 
<math>B \in \mathbb{R}^{N \times M}</math>,
 
<math>C \in \mathbb{R}^{Q \times N}</math>.
 
<math>C \in \mathbb{R}^{Q \times N}</math>.
 
   
 
===Second-Order System===
 
===Second-Order System===

Revision as of 10:58, 9 August 2022

Under Construction.png Note: This page has not been verified by our editors.

Benchmark Model Overview

This page outlines the types of models that are used as benchmark systems. For this general summary we assume an input u : \mathbb{R} \to \mathbb{R}^M, a state x : \mathbb{R} \to \mathbb{R}^N and an output y : \mathbb{R} \to \mathbb{R}^Q.

Linear Time-Invariant System


\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with:

E \in \mathbb{R}^{N \times N}, A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}.


Linear Time-Varying System


\begin{align}
E(t)\dot{x}(t) &= A(t)x(t) + B(t)u(t),\\
y(t) &= C(t)x(t),
\end{align}

with:

E : \mathbb{R} \to \mathbb{R}^{N \times N}, A : \mathbb{R} \to \mathbb{R}^{N \times N}, B : \mathbb{R} \to \mathbb{R}^{N \times M}, C : \mathbb{R} \to \mathbb{R}^{Q \times N}.


Quadratic-Bilinear System


\begin{align}
 E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{i=1}^M x(t) u_i(t) + B u(t), \\
 y(t) &= Cx(t),
\end{align}

with:

E \in \mathbb{R}^{N \times N}, A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, H \in \mathbb{R}^{N \times N^2}, N_i \in \mathbb{R}^{N \times N}, C \in \mathbb{R}^{Q \times N}.


Nonlinear Time-Invariant System


\begin{align}
E\dot{x}(t) &= Ax(t) + f(x(t),u(t)) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with:

E \in \mathbb{R}^{N \times N}, A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}, f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N.


Affine Parametric Linear Time-Invariant System


\begin{align}
(E_0 + \sum_{j=1}^{P_E} p^E_j E_j)\dot{x}(t) &= (A_0 + \sum_{i=1}^{P_A} p^A_i A_i) x(t) + Bu(t),\\
y(t) &= Cx(t),
\end{align}

with:

E_0 \in \mathbb{R}^{N \times N}, E_j \in \mathbb{R}^{N \times N}, A_0 \in \mathbb{R}^{N \times N}, A_i \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}.

Second-Order System


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
y(t) &= C x(t),
\end{align}

with:

M \in \mathbb{R}^{N \times N}, E \in \mathbb{R}^{N \times N}, K \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}.

Nonlinear Second-Order System


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t) + f(x(t),u(t)), \\
y(t) &= C x(t),
\end{align}

with:

M \in \mathbb{R}^{N \times N}, E \in \mathbb{R}^{N \times N}, K \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}, f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N.

Affine Parametric Second-Order System


\begin{align}
(M_0 + \sum_{i=1}^{P_M} p^M_i M_i)\ddot{x}(t) + (E_0 + \sum_{j=1}^{P_E} p^E_j E_j)\dot{x}(t) + (K_0 + \sum_{k=1}^{P_K} p^K_k K_k)x(t) &= B u(t), \\
y(t) &= C x(t),
\end{align}

with:

M_0 \in \mathbb{R}^{N \times N}, M_i \in \mathbb{R}^{N \times N}, E_0 \in \mathbb{R}^{N \times N}, E_j \in \mathbb{R}^{N \times N}, K_0 \in \mathbb{R}^{N \times N}, K_k \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times M}, C \in \mathbb{R}^{Q \times N}.