(→Quadratic-Bilinear System: Add D) |
|||
(17 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | [[Category: |
+ | [[Category:Benchmark]] |
==Benchmark Model Templates== |
==Benchmark Model Templates== |
||
− | This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, <math>A</math> always serves as the name of the component matrix applied to the state <math>x(t)</math> in a linear time-invariant system. |
+ | This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, <math>A</math> always serves as the name of the component matrix applied to the state <math>x(t)</math> in a linear time-invariant, first-order system. |
For all models we assume an input <math>u : \mathbb{R} \to \mathbb{R}^m</math>, with components <math>u_j, j = 1, \ldots, m</math>, |
For all models we assume an input <math>u : \mathbb{R} \to \mathbb{R}^m</math>, with components <math>u_j, j = 1, \ldots, m</math>, |
||
a state <math>x : \mathbb{R} \to \mathbb{R}^n</math>, |
a state <math>x : \mathbb{R} \to \mathbb{R}^n</math>, |
||
Line 9: | Line 9: | ||
Some benchmarks (e.g., [[Bone Model]]) have a constant forcing term, in which case, it is assumed that <math>u(t)</math> is identically <math>1</math>. |
Some benchmarks (e.g., [[Bone Model]]) have a constant forcing term, in which case, it is assumed that <math>u(t)</math> is identically <math>1</math>. |
||
− | ===Linear Time-Invariant System=== |
+ | ===Linear Time-Invariant First-Order System (LTI-FOS)=== |
:<math> |
:<math> |
||
\begin{align} |
\begin{align} |
||
E\dot{x}(t) &= Ax(t) + Bu(t),\\ |
E\dot{x}(t) &= Ax(t) + Bu(t),\\ |
||
− | y(t) &= Cx(t) + Du(t) |
+ | y(t) &= Cx(t) + Du(t), |
\end{align} |
\end{align} |
||
</math> |
</math> |
||
Line 26: | Line 26: | ||
<math>D \in \mathbb{R}^{q \times m}</math>. |
<math>D \in \mathbb{R}^{q \times m}</math>. |
||
+ | By default <math>E = I</math> and <math>D = 0</math>, unless explicitly provided. |
||
⚫ | |||
+ | |||
⚫ | |||
:<math> |
:<math> |
||
Line 43: | Line 45: | ||
<math>D : \mathbb{R} \to \mathbb{R}^{q \times m}</math>. |
<math>D : \mathbb{R} \to \mathbb{R}^{q \times m}</math>. |
||
+ | By default <math>E = I</math> and <math>D = 0</math>, unless explicitly provided. |
||
⚫ | |||
+ | |||
⚫ | |||
:<math> |
:<math> |
||
\begin{align} |
\begin{align} |
||
− | + | (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) &= (A + \sum_{i=1}^{\ell} p^A_i A_i) x(t) + (B + \sum_{i=1}^{\ell} p^B_i B_i)u(t),\\ |
|
− | + | y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i)x(t), |
|
\end{align} |
\end{align} |
||
</math> |
</math> |
||
Line 54: | Line 58: | ||
with |
with |
||
− | <math>E \in \mathbb{R}^{n \times n}</math> |
+ | <math>E, E_i \in \mathbb{R}^{n \times n}</math>; |
− | <math>A \in \mathbb{R}^{n \times n}</math> |
+ | <math>A, A_i \in \mathbb{R}^{n \times n}</math>; |
− | <math> |
+ | <math>B, B_i \in \mathbb{R}^{n \times m}</math>; and |
− | <math> |
+ | <math>C, C_i \in \mathbb{R}^{q \times n}</math>, |
− | <math> |
+ | for all <math>i = 1, \ldots, \ell</math>. |
⚫ | |||
⚫ | |||
+ | By default <math>E = I, E_i = 0</math>, unless explicitly provided. If <math>A_i</math> are provided without <math>A</math>, then it is assumed <math>A = 0</math>. Likewise for <math>B</math>, <math>C</math>, and <math>E</math>. |
||
⚫ | |||
+ | |||
+ | ===Linear Time-Invariant Second-Order System (LTI-SOS)=== |
||
:<math> |
:<math> |
||
\begin{align} |
\begin{align} |
||
− | + | M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\ |
|
− | y(t) &= |
+ | y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t), |
\end{align} |
\end{align} |
||
</math> |
</math> |
||
Line 73: | Line 77: | ||
with |
with |
||
⚫ | |||
<math>E \in \mathbb{R}^{n \times n}</math>, |
<math>E \in \mathbb{R}^{n \times n}</math>, |
||
− | <math> |
+ | <math>K \in \mathbb{R}^{n \times n}</math>, |
<math>B \in \mathbb{R}^{n \times m}</math>, |
<math>B \in \mathbb{R}^{n \times m}</math>, |
||
− | <math> |
+ | <math>C_p, C_v \in \mathbb{R}^{q \times n}</math>, |
− | <math> |
+ | <math>D \in \mathbb{R}^{q \times m}</math>. |
⚫ | |||
− | ===Affine |
+ | ===Affine-Parametric LTI-SOS (AP-LTI-SOS)=== |
:<math> |
:<math> |
||
\begin{align} |
\begin{align} |
||
− | (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) |
+ | (M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= (B + \sum_{i=1}^{\ell} p^B_i B_i) u(t), \\ |
− | y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i)x(t), |
+ | y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i) x(t), |
\end{align} |
\end{align} |
||
</math> |
</math> |
||
Line 91: | Line 97: | ||
with |
with |
||
⚫ | |||
<math>E, E_i \in \mathbb{R}^{n \times n}</math>; |
<math>E, E_i \in \mathbb{R}^{n \times n}</math>; |
||
− | <math> |
+ | <math>K, K_i \in \mathbb{R}^{n \times n}</math>; |
<math>B, B_i \in \mathbb{R}^{n \times m}</math>; and |
<math>B, B_i \in \mathbb{R}^{n \times m}</math>; and |
||
<math>C, C_i \in \mathbb{R}^{q \times n}</math>, |
<math>C, C_i \in \mathbb{R}^{q \times n}</math>, |
||
for all <math>i = 1, \ldots, \ell</math>. |
for all <math>i = 1, \ldots, \ell</math>. |
||
+ | By default <math>E = I, E_i = 0</math>, unless explicitly provided. If <math>M_i</math> are provided without <math>M</math>, then it is assumed <math>M = 0</math>. Likewise for <math>K</math>, <math>B</math>, and <math>C</math>. |
||
⚫ | |||
+ | |||
⚫ | |||
:<math> |
:<math> |
||
\begin{align} |
\begin{align} |
||
− | + | E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{j=1}^m N_j x(t) u_j(t) + B u(t), \\ |
|
− | y(t) &= |
+ | y(t) &= Cx(t) + Du(t), |
\end{align} |
\end{align} |
||
</math> |
</math> |
||
Line 108: | Line 117: | ||
with |
with |
||
⚫ | |||
<math>E \in \mathbb{R}^{n \times n}</math>, |
<math>E \in \mathbb{R}^{n \times n}</math>, |
||
− | <math> |
+ | <math>A \in \mathbb{R}^{n \times n}</math>, |
+ | <math>H \in \mathbb{R}^{n \times n^2}</math>, |
||
+ | <math>N_j \in \mathbb{R}^{n \times n}</math>, |
||
<math>B \in \mathbb{R}^{n \times m}</math>, |
<math>B \in \mathbb{R}^{n \times m}</math>, |
||
− | <math> |
+ | <math>C \in \mathbb{R}^{q \times n}</math>, |
<math>D \in \mathbb{R}^{q \times m}</math>. |
<math>D \in \mathbb{R}^{q \times m}</math>. |
||
⚫ | |||
⚫ | |||
+ | |||
⚫ | |||
⚫ | |||
+ | E\dot{x}(t) &= Ax(t) + Bu(t) + F f(x(t),u(t)),\\ |
||
+ | y(t) &= Cx(t) + Du(t), |
||
⚫ | |||
⚫ | |||
+ | |||
⚫ | |||
+ | |||
+ | <math>E \in \mathbb{R}^{n \times n}</math>, |
||
+ | <math>A \in \mathbb{R}^{n \times n}</math>, |
||
+ | <math>B \in \mathbb{R}^{n \times m}</math>, |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
+ | |||
+ | By default <math>F = I</math>, <math>E = I</math>, <math>D = 0</math>, unless explicitly provided. |
||
− | ===Nonlinear Second-Order System=== |
+ | ===Nonlinear Time-Invariant Second-Order System (NLTI-SOS)=== |
:<math> |
:<math> |
||
Line 139: | Line 168: | ||
When <math>C_v = 0</math>, we denote <math>C = C_p</math>. |
When <math>C_v = 0</math>, we denote <math>C = C_p</math>. |
||
+ | By default <math>F = I</math>, <math>E = I</math>, <math>D = 0</math>, unless explicitly provided. |
||
⚫ | |||
+ | ===Other System Classes=== |
||
⚫ | |||
+ | Affine-parametric and time-varying versions of nonlinear systems are clearly also possible by combining patterns of the above models. |
||
⚫ | |||
− | (M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= (B + \sum_{i=1}^{\ell} p^B_i B_i) u(t), \\ |
||
− | y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i) x(t), |
||
⚫ | |||
⚫ | |||
− | |||
⚫ | |||
− | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
− | for all <math>i = 1, \ldots, \ell</math>. |
Latest revision as of 16:28, 25 March 2024
Benchmark Model Templates
This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, always serves as the name of the component matrix applied to the state
in a linear time-invariant, first-order system.
For all models we assume an input
, with components
,
a state
,
and an output
.
For all parametric models, we assume each component has
parameters; in cases where a component has fewer than
parameters, the extras are treated as
.
Some benchmarks (e.g., Bone Model) have a constant forcing term, in which case, it is assumed that
is identically
.
Linear Time-Invariant First-Order System (LTI-FOS)
with
,
,
,
,
.
By default and
, unless explicitly provided.
Linear Time-Varying First-Order System (LTV-FOS)
with
,
,
,
,
.
By default and
, unless explicitly provided.
Affine-Parametric LTI-FOS (AP-LTI-FOS)
with
;
;
; and
,
for all
.
By default , unless explicitly provided. If
are provided without
, then it is assumed
. Likewise for
,
, and
.
Linear Time-Invariant Second-Order System (LTI-SOS)
with
,
,
,
,
,
.
When , we denote
. By default
and
, unless explicitly provided.
Affine-Parametric LTI-SOS (AP-LTI-SOS)
with
;
;
;
; and
,
for all
.
By default , unless explicitly provided. If
are provided without
, then it is assumed
. Likewise for
,
, and
.
Quadratic-Bilinear System (QBS)
with
,
,
,
,
,
,
.
Nonlinear Time-Invariant First-Order System (NLTI-FOS)
with
,
,
,
,
,
,
.
By default ,
,
, unless explicitly provided.
Nonlinear Time-Invariant Second-Order System (NLTI-SOS)
with
,
,
,
,
,
,
,
.
When , we denote
.
By default ,
,
, unless explicitly provided.
Other System Classes
Affine-parametric and time-varying versions of nonlinear systems are clearly also possible by combining patterns of the above models.