Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Models"

m (→‎Affine Parametric Linear Time-Invariant System: make indices uniform; add + after A_0)
 
(34 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
[[Category:Benchmark]]
{{preliminary}} <!-- Do not remove -->
 
   
 
==Benchmark Model Templates==
[[Category:Miscellaneous]]
 
  +
This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, <math>A</math> always serves as the name of the component matrix applied to the state <math>x(t)</math> in a linear time-invariant, first-order system.
 
For all models we assume an input <math>u : \mathbb{R} \to \mathbb{R}^m</math>, with components <math>u_j, j = 1, \ldots, m</math>,
 
a state <math>x : \mathbb{R} \to \mathbb{R}^n</math>,
 
and an output <math>y : \mathbb{R} \to \mathbb{R}^q</math>.
  +
For all parametric models, we assume each component has <math>\ell</math> parameters; in cases where a component has fewer than <math>\ell</math> parameters, the extras are treated as <math>0</math>.
  +
Some benchmarks (e.g., [[Bone Model]]) have a constant forcing term, in which case, it is assumed that <math>u(t)</math> is identically <math>1</math>.
   
 
===Linear Time-Invariant First-Order System (LTI-FOS)===
==Benchmark Model Overview==
 
This page outlines the types of models that are used as benchmark systems.
 
For this general summary we assume an input <math>u : \mathbb{R} \to \mathbb{R}^M</math>,
 
a state <math>x : \mathbb{R} \to \mathbb{R}^N</math> and an output <math>y : \mathbb{R} \to \mathbb{R}^Q</math>.
 
 
===Linear Time-Invariant System===
 
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
 
E\dot{x}(t) &= Ax(t) + Bu(t),\\
 
E\dot{x}(t) &= Ax(t) + Bu(t),\\
y(t) &= Cx(t),
+
y(t) &= Cx(t) + Du(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>A \in \mathbb{R}^{N \times N}</math>,
+
<math>A \in \mathbb{R}^{n \times n}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>.
+
<math>C \in \mathbb{R}^{q \times n}</math>,
 
<math>D \in \mathbb{R}^{q \times m}</math>.
   
  +
By default <math>E = I</math> and <math>D = 0</math>, unless explicitly provided.
   
===Linear Time-Varying System===
+
===Linear Time-Varying First-Order System (LTV-FOS)===
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
 
E(t)\dot{x}(t) &= A(t)x(t) + B(t)u(t),\\
 
E(t)\dot{x}(t) &= A(t)x(t) + B(t)u(t),\\
y(t) &= C(t)x(t),
+
y(t) &= C(t)x(t) + D(t)u(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
<math>E : \mathbb{R} \to \mathbb{R}^{N \times N}</math>,
+
<math>E : \mathbb{R} \to \mathbb{R}^{n \times n}</math>,
<math>A : \mathbb{R} \to \mathbb{R}^{N \times N}</math>,
+
<math>A : \mathbb{R} \to \mathbb{R}^{n \times n}</math>,
<math>B : \mathbb{R} \to \mathbb{R}^{N \times M}</math>,
+
<math>B : \mathbb{R} \to \mathbb{R}^{n \times m}</math>,
<math>C : \mathbb{R} \to \mathbb{R}^{Q \times N}</math>.
+
<math>C : \mathbb{R} \to \mathbb{R}^{q \times n}</math>,
 
<math>D : \mathbb{R} \to \mathbb{R}^{q \times m}</math>.
   
  +
By default <math>E = I</math> and <math>D = 0</math>, unless explicitly provided.
   
 
===Affine-Parametric LTI-FOS (AP-LTI-FOS)===
===Quadratic-Bilinear System===
 
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{i=1}^M x(t) u_i(t) + B u(t), \\
+
(E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) &= (A + \sum_{i=1}^{\ell} p^A_i A_i) x(t) + (B + \sum_{i=1}^{\ell} p^B_i B_i)u(t),\\
y(t) &= Cx(t),
+
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i)x(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>E, E_i \in \mathbb{R}^{n \times n}</math>;
<math>A \in \mathbb{R}^{N \times N}</math>,
+
<math>A, A_i \in \mathbb{R}^{n \times n}</math>;
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>B, B_i \in \mathbb{R}^{n \times m}</math>; and
<math>H \in \mathbb{R}^{N \times N^2}</math>,
+
<math>C, C_i \in \mathbb{R}^{q \times n}</math>,
<math>N_i \in \mathbb{R}^{N \times N}</math>,
+
for all <math>i = 1, \ldots, \ell</math>.
<math>C \in \mathbb{R}^{Q \times N}</math>.
 
   
  +
By default <math>E = I, E_i = 0</math>, unless explicitly provided. If <math>A_i</math> are provided without <math>A</math>, then it is assumed <math>A = 0</math>. Likewise for <math>B</math>, <math>C</math>, and <math>E</math>.
   
===Nonlinear Time-Invariant System===
+
===Linear Time-Invariant Second-Order System (LTI-SOS)===
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
E\dot{x}(t) &= Ax(t) + f(x(t),u(t)) + Bu(t),\\
+
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
y(t) &= Cx(t),
+
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>M \in \mathbb{R}^{n \times n}</math>,
<math>A \in \mathbb{R}^{N \times N}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>K \in \mathbb{R}^{n \times n}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>,
+
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N</math>.
+
<math>C_p, C_v \in \mathbb{R}^{q \times n}</math>,
 
<math>D \in \mathbb{R}^{q \times m}</math>.
   
  +
When <math>C_v = 0</math>, we denote <math>C = C_p</math>. By default <math>E = I</math> and <math>D = 0</math>, unless explicitly provided.
   
===Affine Parametric Linear Time-Invariant System===
+
===Affine-Parametric LTI-SOS (AP-LTI-SOS)===
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
(E_0 + \sum_{j=1}^{P_E} p^E_j E_j)\dot{x}(t) &= (A_0 + \sum_{i=1}^{P_A} p^A_i A_i) x(t) + Bu(t),\\
+
(M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= (B + \sum_{i=1}^{\ell} p^B_i B_i) u(t), \\
y(t) &= Cx(t),
+
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i) x(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
<math>E_0 \in \mathbb{R}^{N \times N}</math>,
+
<math>M, M_i \in \mathbb{R}^{n \times n}</math>;
<math>E_j \in \mathbb{R}^{N \times N}</math>,
+
<math>E, E_i \in \mathbb{R}^{n \times n}</math>;
<math>A_0 \in \mathbb{R}^{N \times N}</math>,
+
<math>K, K_i \in \mathbb{R}^{n \times n}</math>;
<math>A_i \in \mathbb{R}^{N \times N}</math>,
+
<math>B, B_i \in \mathbb{R}^{n \times m}</math>; and
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>C, C_i \in \mathbb{R}^{q \times n}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>.
+
for all <math>i = 1, \ldots, \ell</math>.
   
  +
By default <math>E = I, E_i = 0</math>, unless explicitly provided. If <math>M_i</math> are provided without <math>M</math>, then it is assumed <math>M = 0</math>. Likewise for <math>K</math>, <math>B</math>, and <math>C</math>.
===Second-Order System===
 
  +
 
===Quadratic-Bilinear System (QBS)===
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
+
E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{j=1}^m N_j x(t) u_j(t) + B u(t), \\
y(t) &= C x(t),
+
y(t) &= Cx(t) + Du(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
<math>M \in \mathbb{R}^{N \times N}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>A \in \mathbb{R}^{n \times n}</math>,
<math>K \in \mathbb{R}^{N \times N}</math>,
+
<math>H \in \mathbb{R}^{n \times n^2}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>N_j \in \mathbb{R}^{n \times n}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>.
+
<math>B \in \mathbb{R}^{n \times m}</math>,
 
<math>C \in \mathbb{R}^{q \times n}</math>,
 
<math>D \in \mathbb{R}^{q \times m}</math>.
   
===Nonlinear Second-Order System===
+
===Nonlinear Time-Invariant First-Order System (NLTI-FOS)===
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t) + f(x(t),u(t)), \\
+
E\dot{x}(t) &= Ax(t) + Bu(t) + F f(x(t),u(t)),\\
y(t) &= C x(t),
+
y(t) &= Cx(t) + Du(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
   
<math>M \in \mathbb{R}^{N \times N}</math>,
+
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>E \in \mathbb{R}^{N \times N}</math>,
+
<math>A \in \mathbb{R}^{n \times n}</math>,
<math>K \in \mathbb{R}^{N \times N}</math>,
+
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>B \in \mathbb{R}^{N \times M}</math>,
+
<math>C \in \mathbb{R}^{q \times n}</math>,
<math>C \in \mathbb{R}^{Q \times N}</math>,
+
<math>D \in \mathbb{R}^{q \times m}</math>,
<math>f : \mathbb{R}^N \times \mathbb{R}^M \to \mathbb{R}^N</math>.
+
<math>F \in \mathbb{R}^{n \times n}</math>,
 
<math>f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n</math>.
   
  +
By default <math>F = I</math>, <math>E = I</math>, <math>D = 0</math>, unless explicitly provided.
===Affine Parametric Second-Order System===
 
  +
 
===Nonlinear Time-Invariant Second-Order System (NLTI-SOS)===
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
(M_0 + \sum_{i=1}^{P_M} p^M_i M_i)\ddot{x}(t) + (E_0 + \sum_{j=1}^{P_E} p^E_j E_j)\dot{x}(t) + (K_0 + \sum_{k=1}^{P_K} p^K_k K_k)x(t) &= B u(t), \\
+
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t) + F f(x(t),u(t)), \\
y(t) &= C x(t),
+
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
   
with:
+
with
  +
 
<math>M \in \mathbb{R}^{n \times n}</math>,
 
<math>E \in \mathbb{R}^{n \times n}</math>,
  +
<math>K \in \mathbb{R}^{n \times n}</math>,
  +
<math>B \in \mathbb{R}^{n \times m}</math>,
  +
<math>F \in \mathbb{R}^{n \times n}</math>,
  +
<math>C_p, C_v \in \mathbb{R}^{q \times n}</math>,
  +
<math>D \in \mathbb{R}^{q \times m}</math>,
  +
<math>f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n</math>.
  +
  +
When <math>C_v = 0</math>, we denote <math>C = C_p</math>.
  +
  +
By default <math>F = I</math>, <math>E = I</math>, <math>D = 0</math>, unless explicitly provided.
   
  +
===Other System Classes===
<math>M_0 \in \mathbb{R}^{N \times N}</math>,
 
  +
Affine-parametric and time-varying versions of nonlinear systems are clearly also possible by combining patterns of the above models.
<math>M_i \in \mathbb{R}^{N \times N}</math>,
 
<math>E_0 \in \mathbb{R}^{N \times N}</math>,
 
<math>E_j \in \mathbb{R}^{N \times N}</math>,
 
<math>K_0 \in \mathbb{R}^{N \times N}</math>,
 
<math>K_k \in \mathbb{R}^{N \times N}</math>,
 
<math>B \in \mathbb{R}^{N \times M}</math>,
 
<math>C \in \mathbb{R}^{Q \times N}</math>.
 

Latest revision as of 16:28, 25 March 2024


Benchmark Model Templates

This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, A always serves as the name of the component matrix applied to the state x(t) in a linear time-invariant, first-order system. For all models we assume an input u : \mathbb{R} \to \mathbb{R}^m, with components u_j, j = 1, \ldots, m, a state x : \mathbb{R} \to \mathbb{R}^n, and an output y : \mathbb{R} \to \mathbb{R}^q. For all parametric models, we assume each component has \ell parameters; in cases where a component has fewer than \ell parameters, the extras are treated as 0. Some benchmarks (e.g., Bone Model) have a constant forcing term, in which case, it is assumed that u(t) is identically 1.

Linear Time-Invariant First-Order System (LTI-FOS)


\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t),\\
y(t) &= Cx(t) + Du(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}.

By default E = I and D = 0, unless explicitly provided.

Linear Time-Varying First-Order System (LTV-FOS)


\begin{align}
E(t)\dot{x}(t) &= A(t)x(t) + B(t)u(t),\\
y(t) &= C(t)x(t) + D(t)u(t),
\end{align}

with

E : \mathbb{R} \to \mathbb{R}^{n \times n}, A : \mathbb{R} \to \mathbb{R}^{n \times n}, B : \mathbb{R} \to \mathbb{R}^{n \times m}, C : \mathbb{R} \to \mathbb{R}^{q \times n}, D : \mathbb{R} \to \mathbb{R}^{q \times m}.

By default E = I and D = 0, unless explicitly provided.

Affine-Parametric LTI-FOS (AP-LTI-FOS)


\begin{align}
(E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) &= (A + \sum_{i=1}^{\ell} p^A_i A_i) x(t) + (B + \sum_{i=1}^{\ell} p^B_i B_i)u(t),\\
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i)x(t),
\end{align}

with

E, E_i \in \mathbb{R}^{n \times n}; A, A_i \in \mathbb{R}^{n \times n}; B, B_i \in \mathbb{R}^{n \times m}; and C, C_i \in \mathbb{R}^{q \times n}, for all i = 1, \ldots, \ell.

By default E = I, E_i = 0, unless explicitly provided. If A_i are provided without A, then it is assumed A = 0. Likewise for B, C, and E.

Linear Time-Invariant Second-Order System (LTI-SOS)


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
\end{align}

with

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C_p, C_v \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}.

When C_v = 0, we denote C = C_p. By default E = I and D = 0, unless explicitly provided.

Affine-Parametric LTI-SOS (AP-LTI-SOS)


\begin{align}
(M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= (B + \sum_{i=1}^{\ell} p^B_i B_i) u(t), \\
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i) x(t),
\end{align}

with

M, M_i \in \mathbb{R}^{n \times n}; E, E_i \in \mathbb{R}^{n \times n}; K, K_i \in \mathbb{R}^{n \times n}; B, B_i \in \mathbb{R}^{n \times m}; and C, C_i \in \mathbb{R}^{q \times n}, for all i = 1, \ldots, \ell.

By default E = I, E_i = 0, unless explicitly provided. If M_i are provided without M, then it is assumed M = 0. Likewise for K, B, and C.

Quadratic-Bilinear System (QBS)


\begin{align}
 E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{j=1}^m N_j x(t) u_j(t) + B u(t), \\
 y(t) &= Cx(t) + Du(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times n^2}, N_j \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}.

Nonlinear Time-Invariant First-Order System (NLTI-FOS)


\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t) + F f(x(t),u(t)),\\
y(t) &= Cx(t) + Du(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}, F \in \mathbb{R}^{n \times n}, f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n.

By default F = I, E = I, D = 0, unless explicitly provided.

Nonlinear Time-Invariant Second-Order System (NLTI-SOS)


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t) + F f(x(t),u(t)), \\
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
\end{align}

with

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, F \in \mathbb{R}^{n \times n}, C_p, C_v \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}, f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n.

When C_v = 0, we denote C = C_p.

By default F = I, E = I, D = 0, unless explicitly provided.

Other System Classes

Affine-parametric and time-varying versions of nonlinear systems are clearly also possible by combining patterns of the above models.