Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Stokes equation"

(init Stokes)
 
 
(4 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
{{preliminary}} <!-- Do not remove -->
 
{{preliminary}} <!-- Do not remove -->
   
  +
[[Category:benchmark]]
  +
[[Category:procedural]]
  +
[[Category:SISO]]
 
[[Category:linear]]
 
[[Category:linear]]
  +
[[Category:Sparse]]
   
 
==Description==
 
==Description==
  +
This benchmark presents the two-dimensional instationary [[wikipedia:Stokes_flow|Stokes equation]],
  +
which models flow of an incompressible fluid in a domain <ref name="Sty03"/>,<ref name="Sty04"/>,<ref name="MehS05"/>,<ref name="Sty06"/>,<ref name="Sch07"/>.
  +
The associated partial differential equation system is given by:
  +
:<math>
  +
\begin{align}
  +
\frac{\partial v}{\partial t} &= \Delta v - \nabla p + f, \qquad (x,t) \in \Omega \times (0,T] \\
  +
0 &= \operatorname{div} v, \\
  +
v &= 0, \qquad \qquad \qquad \quad \; (x,t) \in \partial \Omega \times (0,T]
  +
\end{align}
  +
</math>
  +
with velocity variable <math>v(x,t)</math> and pressure variable <math>\rho(x,t)</math>,
  +
on a spatial domain <math>\Omega = [0,1] \times [0,1] \subset \mathbb{R}^2</math>,
  +
and an external forcing term <math>f</math>.
  +
The boundary conditions are no-slip.
   
  +
A finite volume discretization on a uniform, staggered grid yields the descriptor system:
  +
:<math>
  +
\begin{align}
  +
\begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{v}_h(t) \\ 0 \end{pmatrix} &=
  +
\begin{bmatrix} A_{11} & A_{12} \\ A_{12}^\intercal & 0 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix} +
  +
\begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t) \\
  +
y(t)\quad & = \begin{bmatrix} C_1 \,\;&\;\, C_2 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix}
  +
\end{align}
  +
</math>
  +
The matrix <math>A_{11}</math> matrix is the discretized Laplace operator,
  +
while <math>A_{12}</math> corresponds to the discrete gradient and divergence operators.
  +
For this benchmark the compound discretization of the boundary values and external forcing <math>[B_1 \; B_2]^\intercal \in \mathbb{R}^{N \times 1}</math> is chosen (uniformly) randomly,
  +
whereas the output matrix <math>[C_1 \; C_2] \in \mathbb{R}^{1 \times N}</math> is set to:
  +
:<math>
  +
\begin{align}
  +
\begin{bmatrix} C_1 & C_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}.
  +
\end{align}
  +
</math>
   
 
==Data==
   
  +
This is a procedural benchmark.
==Origin==
 
  +
A MATLAB m-file to generate <math>E, A, B, C</math> matrices can be found as part of the [https://www.mpi-magdeburg.mpg.de/projects/mess M.E.S.S] project,
  +
under:
   
  +
DEMOS/models/stokes/stokes_ind2.m
   
 
==Dimensions==
   
  +
System structure:
==Data==
 
   
  +
:<math>
  +
\begin{align}
  +
E \dot{x}(t) &= Ax(t) + Bu(t) \\
  +
y(t) &= Cx(t)
  +
\end{align}
  +
</math>
   
  +
System dimensions:
   
  +
<math>E \in \mathbb{R}^{N \times N}</math>,
==Dimensions==
 
  +
<math>A \in \mathbb{R}^{N \times N}</math>,
  +
<math>B \in \mathbb{R}^{N \times 1}</math>,
  +
<math>C \in \mathbb{R}^{1 \times N}</math>.
   
 
==Citation==
   
  +
To cite this benchmark, use the following references:
   
  +
* For the benchmark itself and its data:
==Citation==
 
  +
::The MORwiki Community, '''Stokes equation'''. MORwiki - Model Order Reduction Wiki, 2018. https://modelreduction.org/morwiki/Stokes_equation
   
  +
@MISC{morwiki_stokes,
  +
author = <nowiki>{{The MORwiki Community}}</nowiki>,
  +
title = {Stokes equation},
  +
howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  +
url = <nowiki>{https://modelreduction.org/morwiki/Stokes_equation}</nowiki>,
  +
year = {20XX}
  +
}
   
  +
* For the background on the benchmark:
  +
  +
@PHDTHESIS{Sch07,
  +
author = <nowiki>{M.Schmidt}</nowiki>,
  +
title = {Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems},
  +
school = {TU Berlin},
  +
year = {2007},
  +
doi = {10.14279/depositonce-1600}
  +
}
   
 
==References==
 
==References==
   
  +
<references>
  +
  +
<ref name="Sty03">T. Stykel. <span class="plainlinks">[https://doi.org/10.1002/pamm.200310302 Balanced truncation model reduction for descriptor systems]</span>, Proceedings in Applied Mathematics and Mechanics 3: 5--8, 2003.</ref>
  +
  +
<ref name="Sty04">T. Stykel. <span class="plainlinks">[https://doi.org/10.1007/s00498-004-0141-4 Gramian-Based Model Reduction for Descriptor System]</span>, Mathematics of Control, Signals, and Systems 16(4): 297--319, 2004.</ref>
  +
  +
<ref name="MehS05">V. Mehrmann, T. Stykel. <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_3 Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form]</span>, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 83--115, 2005.</ref>
  +
  +
<ref name="Sty06">T. Stykel. <span class="plainlinks">[https://doi.org/10.1016/j.laa.2004.01.015 Balanced Truncation model reduction for semidiscretized Stokes equation]</span>, Linear Algebra and its Application 415(2--3): 262--289, 2006.</ref>
  +
  +
<ref name="Sch07">M.Schmidt. <span class="plainlinks">[https://doi.org/10.14279/depositonce-1600 Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems]</span>, Ph.D. thesis, TU Berlin, 2007.</ref>
  +
  +
</references>
   
 
==Contact==
 
==Contact==

Latest revision as of 07:39, 17 June 2025

Under Construction.png Note: This page has not been verified by our editors.

Description

This benchmark presents the two-dimensional instationary Stokes equation, which models flow of an incompressible fluid in a domain [1],[2],[3],[4],[5]. The associated partial differential equation system is given by:


\begin{align}
 \frac{\partial v}{\partial t} &= \Delta v - \nabla p + f, \qquad (x,t) \in \Omega \times (0,T] \\
 0 &= \operatorname{div} v, \\
 v &= 0, \qquad \qquad \qquad \quad \; (x,t) \in \partial \Omega \times (0,T]
\end{align}

with velocity variable v(x,t) and pressure variable \rho(x,t), on a spatial domain \Omega = [0,1] \times [0,1] \subset \mathbb{R}^2, and an external forcing term f. The boundary conditions are no-slip.

A finite volume discretization on a uniform, staggered grid yields the descriptor system:


\begin{align}
 \begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{v}_h(t) \\ 0 \end{pmatrix} &= 
 \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^\intercal & 0 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix} +
 \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t) \\
 y(t)\quad & = \begin{bmatrix} C_1 \,\;&\;\, C_2 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix}
\end{align}

The matrix A_{11} matrix is the discretized Laplace operator, while A_{12} corresponds to the discrete gradient and divergence operators. For this benchmark the compound discretization of the boundary values and external forcing [B_1 \; B_2]^\intercal \in \mathbb{R}^{N \times 1} is chosen (uniformly) randomly, whereas the output matrix [C_1 \; C_2] \in \mathbb{R}^{1 \times N} is set to:


\begin{align}
 \begin{bmatrix} C_1 & C_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}.
\end{align}

Data

This is a procedural benchmark. A MATLAB m-file to generate E, A, B, C matrices can be found as part of the M.E.S.S project, under:

 DEMOS/models/stokes/stokes_ind2.m

Dimensions

System structure:


\begin{align}
E \dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t)
\end{align}

System dimensions:

E \in \mathbb{R}^{N \times N}, A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times 1}, C \in \mathbb{R}^{1 \times N}.

Citation

To cite this benchmark, use the following references:

  • For the benchmark itself and its data:
The MORwiki Community, Stokes equation. MORwiki - Model Order Reduction Wiki, 2018. https://modelreduction.org/morwiki/Stokes_equation
@MISC{morwiki_stokes,
  author =       {{The MORwiki Community}},
  title =        {Stokes equation},
  howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  url =          {https://modelreduction.org/morwiki/Stokes_equation},
  year =         {20XX}
}
  • For the background on the benchmark:
@PHDTHESIS{Sch07,
  author =       {M.Schmidt},
  title =        {Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems},
  school =       {TU Berlin},
  year =         {2007},
  doi =          {10.14279/depositonce-1600}
}

References

  1. T. Stykel. Balanced truncation model reduction for descriptor systems, Proceedings in Applied Mathematics and Mechanics 3: 5--8, 2003.
  2. T. Stykel. Gramian-Based Model Reduction for Descriptor System, Mathematics of Control, Signals, and Systems 16(4): 297--319, 2004.
  3. V. Mehrmann, T. Stykel. Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 83--115, 2005.
  4. T. Stykel. Balanced Truncation model reduction for semidiscretized Stokes equation, Linear Algebra and its Application 415(2--3): 262--289, 2006.
  5. M.Schmidt. Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems, Ph.D. thesis, TU Berlin, 2007.

Contact

Christian Himpe