Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Nonlinear Heat Transfer"

 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{preliminary}} <!-- Do not remove -->
 
 
 
[[Category:benchmark]]
 
[[Category:benchmark]]
 
[[Category:Oberwolfach]]
 
[[Category:Oberwolfach]]
  +
  +
{{Infobox
  +
|Title = Nonlinear Heat Transfer
  +
|Benchmark ID =
  +
* linearHeatTransfer_n15m2q2
  +
* nonlinearHeatTransfer_n15m2q2
  +
* nonlinearHeatTransfer_n410m2q2
  +
|Category = oberwolfach
  +
|System-Class =
  +
* LTI-FOS
  +
* NLTI-FOS
  +
* NLTI-FOS
  +
|nstates =
  +
* 15
  +
* 15
  +
* 410
  +
|ninputs = 2
  +
|noutputs = 2
  +
|nparameters = 0
  +
|components =
  +
* A, B, C, E
  +
* A, B, C, E, F, f
  +
* A, B, C, E, F, f
  +
|License = NA
  +
|Creator = [[User:Himpe]]
  +
|Editor =
  +
* [[User:Himpe]]
  +
|Zenodo-link = NA
  +
}}
   
 
==Description==
 
==Description==
Line 22: Line 49:
 
</math>
 
</math>
   
We output of the model is the temperature <math>T(x,t)</math>, the degrees of freedom are the temperature from left to right.
+
The output of the model is the temperature <math>T(x,t)</math>, the degrees of freedom are the temperature from left to right.
 
The right end of the beam (at <math>x=L</math>) is fixed at ambient temperature <math>0</math>;
 
The right end of the beam (at <math>x=L</math>) is fixed at ambient temperature <math>0</math>;
 
this node does not occur in the model any more.
 
this node does not occur in the model any more.
The model features two inputs: The first one is a time-dependent uniform heat flux <math>f</math> [W/m2] flowing in from the left end (at <math>x=0</math>).
+
The model features two inputs: The first one is a time-dependent uniform heat flux <math>f</math> [W/m<sup>2</sup>] flowing in from the left end (at <math>x=0</math>).
The second one is a time dependent heat source <math>Q</math> [W/m3] in the beam volume, e.g. from an electric current.
+
The second one is a time dependent heat source <math>Q</math> [W/m<sup>3</sup>] in the beam volume, e.g. from an electric current.
   
 
===Benchmark examples===
 
===Benchmark examples===
Line 209: Line 236:
 
==Origin==
 
==Origin==
   
This benchmark is part of the '''Oberwolfach Benchmark Collection'''<ref name="korvink2005"/>; No. 38883.
+
This benchmark is part of the '''Oberwolfach Benchmark Collection'''<ref name="korvink2005"/>; No. 38883, see <ref name="lienemann05"/>.
   
 
==Data==
 
==Data==
   
Details of the implementation are available in a separate report<ref name="lienemann05"/>.
+
Details of the implementation are available in a separate report<ref name="lienemann04"/>.
 
A typical input to this system is a step response; periodic on/off switching is also possible.
 
A typical input to this system is a step response; periodic on/off switching is also possible.
 
The reduced model should thus both represent the step response as well as the possible influence of higher order harmonics.
 
The reduced model should thus both represent the step response as well as the possible influence of higher order harmonics.
Line 220: Line 247:
 
|+ style="caption-side:bottom;"|
 
|+ style="caption-side:bottom;"|
 
|-
 
|-
  +
|[https://csc.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/NonlinearHeatTransfer-dim1e1-n15-linear.zip NonlinearHeatTransfer-dim1e1-n15-linear.zip]
|[https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark/Nonlinear%20heat%20transfer%20%2838883%29/files/fileinnercontentproxy.2010-02-05.0283505742 NonlinearHeatCond-n15-linear.zip]
 
 
|1 kB
 
|1 kB
 
|-
 
|-
  +
|[https://csc.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/NonlinearHeatTransfer-dim1e1-n15-nonlinear.zip NonlinearHeatTransfer-dim1e1-n15-nonlinear.zip]
|[https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark/Nonlinear%20heat%20transfer%20%2838883%29/files/fileinnercontentproxy.2010-02-05.0325677886 NonlinearHeatCond-n15-nonlinear.zip]
 
 
|1.2 kB
 
|1.2 kB
 
|-
 
|-
  +
|[https://csc.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/NonlinearHeatTransfer-dim1e2-n410-nonlinear.zip NonlinearHeatTransfer-dim1e2-n410-nonlinear.zip]
|[https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark/Nonlinear%20heat%20transfer%20%2838883%29/files/fileinnercontentproxy.2010-02-05.0347354187 NonlinearHeatCond-n410-nonlinear.zip]
 
 
|18.8 kB
 
|18.8 kB
 
|}
 
|}
Line 236: Line 263:
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t) + f(x(t)) \\
+
E\dot{x}(t) &= Ax(t) + Bu(t) + F f(x(t)) \\
 
y(t) &= Cx(t)
 
y(t) &= Cx(t)
 
\end{align}
 
\end{align}
Line 243: Line 270:
 
System dimensions:
 
System dimensions:
   
<math>E \in \mathbb{R}^{N \times N}</math>,
 
 
<math>A \in \mathbb{R}^{N \times N}</math>,
 
<math>A \in \mathbb{R}^{N \times N}</math>,
 
<math>B \in \mathbb{R}^{N \times 2}</math>,
 
<math>B \in \mathbb{R}^{N \times 2}</math>,
 
<math>C \in \mathbb{R}^{2 \times N}</math>,
 
<math>C \in \mathbb{R}^{2 \times N}</math>,
 
<math>E \in \mathbb{R}^{N \times N}</math>,
  +
<math>F \in \mathbb{R}^{N \times N}</math>,
 
<math>f : \mathbb{R}^N \to \mathbb{R}^N</math>.
 
<math>f : \mathbb{R}^N \to \mathbb{R}^N</math>.
   
Line 254: Line 282:
 
<tt>n15-nonlinear</tt>: <math>N = 15</math>,
 
<tt>n15-nonlinear</tt>: <math>N = 15</math>,
 
<tt>n410-nonlinear</tt>: <math>N = 410</math>.
 
<tt>n410-nonlinear</tt>: <math>N = 410</math>.
  +
  +
==Citation==
  +
  +
To cite this benchmark, use the following references:
  +
  +
* For the benchmark itself and its data:
  +
::The MORwiki Community, '''Nonlinear Heat Transfer'''. MORwiki - Model Order Reduction Wiki, 2018. https://modelreduction.org/morwiki/Nonlinear_Heat_Transfer
  +
  +
@MISC{morwiki_nheat,
  +
author = <nowiki>{{The MORwiki Community}}</nowiki>,
  +
title = {Nonlinear Heat Transfer},
  +
howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  +
url = <nowiki>{https://modelreduction.org/morwiki/Nonlinear_Heat_Transfer}</nowiki>,
  +
year = {20XX}
  +
}
  +
  +
* For the background on the benchmark:
  +
  +
@INPROCEEDINGS{LieYK04,
  +
author = <nowiki>{J. Lienemann, A. Yousefi, J.G. Korvink}</nowiki>,
  +
title = {Nonlinear heat transfer modelling},
  +
booktile = {12th Mediterranean Conference on Control and Automation},
  +
year = {2004}
  +
}
  +
   
   
Line 262: Line 315:
 
<ref name="korvink2005"> J.G. Korvink, E.B. Rudnyi, <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_11 Oberwolfach Benchmark Collection]</span>, In: Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 311--315, 2005.</ref>
 
<ref name="korvink2005"> J.G. Korvink, E.B. Rudnyi, <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_11 Oberwolfach Benchmark Collection]</span>, In: Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 311--315, 2005.</ref>
   
<ref name="lienemann05"> J. Lienemann, A. Yousefi, J.G. Korvink, [https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark/Nonlinear%20heat%20transfer%20%2838883%29/files/fileinnercontentproxy.2010-02-05.0369225308 Nonlinear heat transfer modelling], 12th Mediterranean Conference on Control and Automation, 2004.</ref>
+
<ref name="lienemann05"> J. Lienemann, A. Yousefi, J.G. Korvink, <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_13 Nonlinear Heat Transfer Modeling]</span>, In: Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 327--331, 2005.</ref>
  +
  +
<ref name="lienemann04"> J. Lienemann, A. Yousefi, J.G. Korvink, [https://www.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/NonlinearHeatTransfer.pdf Nonlinear heat transfer modelling], 12th Mediterranean Conference on Control and Automation, 2004.</ref>
   
 
</references>
 
</references>

Latest revision as of 07:36, 17 June 2025


Nonlinear Heat Transfer
Background
Benchmark ID
  • linearHeatTransfer_n15m2q2
  • nonlinearHeatTransfer_n15m2q2
  • nonlinearHeatTransfer_n410m2q2
Category

oberwolfach

System-Class
  • LTI-FOS
  • NLTI-FOS
  • NLTI-FOS
Parameters
nstates
  • 15
  • 15
  • 410
ninputs

2

noutputs

2

nparameters

0

components
  • A, B, C, E
  • A, B, C, E, F, f
  • A, B, C, E, F, f
Copyright
License

NA

Creator

Christian Himpe

Editor
Location

NA


Description

The simulation of heat transport for a single device is easily tackled by current computational resources, even for a complex, finely structured geometry; however, the calculation of a multi-scale system consisting of a large number of those devices, e.g., assembled printed circuit boards, is still a challenge. A further problem is the large change in heat conductivity of many semiconductor materials with temperature. We model the heat transfer along a 1D beam that has a nonlinear heat capacity which is represented by a polynomial of arbitrary degree as a function of the temperature state. For accurate modelling of the temperature distribution, the resulting model requires many state variables to be described adequately. The resulting complexity, i.e., number of first order differential equations and nonlinear parts, is such that a simplification or model reduction is needed in order to perform a simulation in an acceptable amount of time for the applications at hand. Thus the need for model order reduction emerges.

Model description

We model the heat transfer along a 1D beam with length L, cross sectional area A and nonlinear heat conductivity represented by a polynomial in temperature T(x,t) of arbitrary degree n:


\kappa(T) = a_0 + a_1 T + a_2 T^2 + \dots

The output of the model is the temperature T(x,t), the degrees of freedom are the temperature from left to right. The right end of the beam (at x=L) is fixed at ambient temperature 0; this node does not occur in the model any more. The model features two inputs: The first one is a time-dependent uniform heat flux f [W/m2] flowing in from the left end (at x=0). The second one is a time dependent heat source Q [W/m3] in the beam volume, e.g. from an electric current.

Benchmark examples

An interactive matrix generator has been created using Wolfram Research's webMathematica. Models produced by this generator are in the DSIF format, which allows for nonlinear terms.

Three ready-made examples are available (all files are gzip compressed DSIF files, Units: SI):

Linear example (heat conductivity not temperature dependent)

Table 1: Specification of NonlinearHeatCond-n15-linear.zip.
Property Symbol Unit Value
Number of nodes 15
Beam length l [m] 0.1
Cross-sectional area A [m2] 10^{-4}
Material density \rho [kg/m3] 3970
Heat capacity C_p [J/kg K] 766
Heat conductivity a_0 [W/m K] 36

Nonlinear examples (heat conductivity temperature dependent)

Table 1: Specification of NonlinearHeatCond-n15-nonlinear.zip.
Property Symbol Unit Value
Number of nodes 15
Beam length l [m] 0.1
Cross-sectional area A [m2] 10^{-4}
Material density \rho [kg/m3] 3970
Heat capacity C_p [J/kg K] 766
Heat conductivity a_0 [W/m K] 36
Heat conductivity a1 [W/m K2] -0.1116
Heat conductivity a_2 [W/m K3] 0.00017298
Heat conductivity a_3 [W/m K4] -1.78746 \cdot 10^{-7}
Heat conductivity a_4 [W/m K5] 1.3852815 \cdot 10^{-10}
Table 1: Specification of NonlinearHeatCond-n410-nonlinear.zip.
Property Symbol Unit Value
Number of nodes 410
Beam length l [m] 0.1
Cross-sectional area A [m2] 10^{-4}
Material density \rho [kg/m3] 3970
Heat capacity C_p [J/kg K] 766
Heat conductivity a_0 [W/m K] 36
Heat conductivity a_1 [W/m K2] -0.1116
Heat conductivity a_2 [W/m K3] 0.00017298
Heat conductivity a_3 [W/m K4] -1.78746 \cdot 10^{-7}
Heat conductivity a_4 [W/m K5] 1.3852815 \cdot 10^{-10}

The .m files contain matrices E, A, B, F and C and the vector f for the following system of equations:


\begin{align}
E \dot{x}(t) + A x(t) &= B u(t) + F f(x(t)) \\
y(t) &= C x(t)
\end{align}

The two outputs are on the left end and in the middle of the beam.


Origin

This benchmark is part of the Oberwolfach Benchmark Collection[1]; No. 38883, see [2].

Data

Details of the implementation are available in a separate report[3]. A typical input to this system is a step response; periodic on/off switching is also possible. The reduced model should thus both represent the step response as well as the possible influence of higher order harmonics.

NonlinearHeatTransfer-dim1e1-n15-linear.zip 1 kB
NonlinearHeatTransfer-dim1e1-n15-nonlinear.zip 1.2 kB
NonlinearHeatTransfer-dim1e2-n410-nonlinear.zip 18.8 kB

Dimensions

System structure:


\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t) + F f(x(t)) \\
y(t) &= Cx(t)
\end{align}

System dimensions:

A \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times 2}, C \in \mathbb{R}^{2 \times N}, E \in \mathbb{R}^{N \times N}, F \in \mathbb{R}^{N \times N}, f : \mathbb{R}^N \to \mathbb{R}^N.

System variants:

n15-linear: N = 15, n15-nonlinear: N = 15, n410-nonlinear: N = 410.

Citation

To cite this benchmark, use the following references:

  • For the benchmark itself and its data:
The MORwiki Community, Nonlinear Heat Transfer. MORwiki - Model Order Reduction Wiki, 2018. https://modelreduction.org/morwiki/Nonlinear_Heat_Transfer
@MISC{morwiki_nheat,
  author =       {{The MORwiki Community}},
  title =        {Nonlinear Heat Transfer},
  howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  url =          {https://modelreduction.org/morwiki/Nonlinear_Heat_Transfer},
  year =         {20XX}
}
  • For the background on the benchmark:
@INPROCEEDINGS{LieYK04,
  author =       {J. Lienemann, A. Yousefi, J.G. Korvink},
  title =        {Nonlinear heat transfer modelling},
  booktile =     {12th Mediterranean Conference on Control and Automation},
  year =         {2004}
}


References

  1. J.G. Korvink, E.B. Rudnyi, Oberwolfach Benchmark Collection, In: Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 311--315, 2005.
  2. J. Lienemann, A. Yousefi, J.G. Korvink, Nonlinear Heat Transfer Modeling, In: Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 327--331, 2005.
  3. J. Lienemann, A. Yousefi, J.G. Korvink, Nonlinear heat transfer modelling, 12th Mediterranean Conference on Control and Automation, 2004.