m (reorder models) |
|||
(7 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | [[Category: |
+ | [[Category:Benchmark]] |
==Benchmark Model Templates== |
==Benchmark Model Templates== |
||
− | This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, <math>A</math> always serves as the name of the component matrix applied to the state <math>x(t)</math> in a linear time-invariant system. |
+ | This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, <math>A</math> always serves as the name of the component matrix applied to the state <math>x(t)</math> in a linear time-invariant, first-order system. |
For all models we assume an input <math>u : \mathbb{R} \to \mathbb{R}^m</math>, with components <math>u_j, j = 1, \ldots, m</math>, |
For all models we assume an input <math>u : \mathbb{R} \to \mathbb{R}^m</math>, with components <math>u_j, j = 1, \ldots, m</math>, |
||
a state <math>x : \mathbb{R} \to \mathbb{R}^n</math>, |
a state <math>x : \mathbb{R} \to \mathbb{R}^n</math>, |
||
Line 25: | Line 25: | ||
<math>C \in \mathbb{R}^{q \times n}</math>, |
<math>C \in \mathbb{R}^{q \times n}</math>, |
||
<math>D \in \mathbb{R}^{q \times m}</math>. |
<math>D \in \mathbb{R}^{q \times m}</math>. |
||
+ | |||
+ | By default <math>E = I</math> and <math>D = 0</math>, unless explicitly provided. |
||
===Linear Time-Varying First-Order System (LTV-FOS)=== |
===Linear Time-Varying First-Order System (LTV-FOS)=== |
||
Line 43: | Line 45: | ||
<math>D : \mathbb{R} \to \mathbb{R}^{q \times m}</math>. |
<math>D : \mathbb{R} \to \mathbb{R}^{q \times m}</math>. |
||
+ | By default <math>E = I</math> and <math>D = 0</math>, unless explicitly provided. |
||
⚫ | |||
+ | |||
⚫ | |||
:<math> |
:<math> |
||
Line 59: | Line 63: | ||
<math>C, C_i \in \mathbb{R}^{q \times n}</math>, |
<math>C, C_i \in \mathbb{R}^{q \times n}</math>, |
||
for all <math>i = 1, \ldots, \ell</math>. |
for all <math>i = 1, \ldots, \ell</math>. |
||
+ | |||
+ | By default <math>E = I, E_i = 0</math>, unless explicitly provided. If <math>A_i</math> are provided without <math>A</math>, then it is assumed <math>A = 0</math>. Likewise for <math>B</math>, <math>C</math>, and <math>E</math>. |
||
===Linear Time-Invariant Second-Order System (LTI-SOS)=== |
===Linear Time-Invariant Second-Order System (LTI-SOS)=== |
||
Line 78: | Line 84: | ||
<math>D \in \mathbb{R}^{q \times m}</math>. |
<math>D \in \mathbb{R}^{q \times m}</math>. |
||
− | When <math>C_v = 0</math>, we denote <math>C = C_p</math>. |
+ | When <math>C_v = 0</math>, we denote <math>C = C_p</math>. By default <math>E = I</math> and <math>D = 0</math>, unless explicitly provided. |
− | ===Affine |
+ | ===Affine-Parametric LTI-SOS (AP-LTI-SOS)=== |
:<math> |
:<math> |
||
Line 97: | Line 103: | ||
<math>C, C_i \in \mathbb{R}^{q \times n}</math>, |
<math>C, C_i \in \mathbb{R}^{q \times n}</math>, |
||
for all <math>i = 1, \ldots, \ell</math>. |
for all <math>i = 1, \ldots, \ell</math>. |
||
+ | |||
+ | By default <math>E = I, E_i = 0</math>, unless explicitly provided. If <math>M_i</math> are provided without <math>M</math>, then it is assumed <math>M = 0</math>. Likewise for <math>K</math>, <math>B</math>, and <math>C</math>. |
||
===Quadratic-Bilinear System (QBS)=== |
===Quadratic-Bilinear System (QBS)=== |
||
Line 121: | Line 129: | ||
:<math> |
:<math> |
||
\begin{align} |
\begin{align} |
||
− | E\dot{x}(t) &= Ax(t) + f(x(t),u(t) |
+ | E\dot{x}(t) &= Ax(t) + Bu(t) + F f(x(t),u(t)),\\ |
y(t) &= Cx(t) + Du(t), |
y(t) &= Cx(t) + Du(t), |
||
\end{align} |
\end{align} |
||
Line 133: | Line 141: | ||
<math>C \in \mathbb{R}^{q \times n}</math>, |
<math>C \in \mathbb{R}^{q \times n}</math>, |
||
<math>D \in \mathbb{R}^{q \times m}</math>, |
<math>D \in \mathbb{R}^{q \times m}</math>, |
||
+ | <math>F \in \mathbb{R}^{n \times n}</math>, |
||
<math>f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n</math>. |
<math>f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n</math>. |
||
+ | |||
+ | By default <math>F = I</math>, <math>E = I</math>, <math>D = 0</math>, unless explicitly provided. |
||
===Nonlinear Time-Invariant Second-Order System (NLTI-SOS)=== |
===Nonlinear Time-Invariant Second-Order System (NLTI-SOS)=== |
||
Line 156: | Line 167: | ||
When <math>C_v = 0</math>, we denote <math>C = C_p</math>. |
When <math>C_v = 0</math>, we denote <math>C = C_p</math>. |
||
+ | |||
+ | By default <math>F = I</math>, <math>E = I</math>, <math>D = 0</math>, unless explicitly provided. |
||
+ | |||
+ | ===Other System Classes=== |
||
+ | Affine-parametric and time-varying versions of nonlinear systems are clearly also possible by combining patterns of the above models. |
Latest revision as of 16:28, 25 March 2024
Benchmark Model Templates
This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, always serves as the name of the component matrix applied to the state
in a linear time-invariant, first-order system.
For all models we assume an input
, with components
,
a state
,
and an output
.
For all parametric models, we assume each component has
parameters; in cases where a component has fewer than
parameters, the extras are treated as
.
Some benchmarks (e.g., Bone Model) have a constant forcing term, in which case, it is assumed that
is identically
.
Linear Time-Invariant First-Order System (LTI-FOS)
with
,
,
,
,
.
By default and
, unless explicitly provided.
Linear Time-Varying First-Order System (LTV-FOS)
with
,
,
,
,
.
By default and
, unless explicitly provided.
Affine-Parametric LTI-FOS (AP-LTI-FOS)
with
;
;
; and
,
for all
.
By default , unless explicitly provided. If
are provided without
, then it is assumed
. Likewise for
,
, and
.
Linear Time-Invariant Second-Order System (LTI-SOS)
with
,
,
,
,
,
.
When , we denote
. By default
and
, unless explicitly provided.
Affine-Parametric LTI-SOS (AP-LTI-SOS)
with
;
;
;
; and
,
for all
.
By default , unless explicitly provided. If
are provided without
, then it is assumed
. Likewise for
,
, and
.
Quadratic-Bilinear System (QBS)
with
,
,
,
,
,
,
.
Nonlinear Time-Invariant First-Order System (NLTI-FOS)
with
,
,
,
,
,
,
.
By default ,
,
, unless explicitly provided.
Nonlinear Time-Invariant Second-Order System (NLTI-SOS)
with
,
,
,
,
,
,
,
.
When , we denote
.
By default ,
,
, unless explicitly provided.
Other System Classes
Affine-parametric and time-varying versions of nonlinear systems are clearly also possible by combining patterns of the above models.