Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Silicon Nitride Membrane"

(doi links for references)
m (infobox string)
 
(17 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
[[Category:benchmark]]
 
[[Category:benchmark]]
[[Category:parametric system]]
+
[[Category:Parametric]]
[[Category:linear system]]
+
[[Category:linear]]
[[Category:first order system]]
+
[[Category:first differential order]]
[[Category:physical parameters]]
 
[[Category:four parameters]]
 
 
[[Category:time invariant]]
 
[[Category:time invariant]]
   
  +
{{Infobox
==Description==
 
  +
|Title = Silicon Nitride Membrane
  +
|Benchmark ID = siliconNitrideMembrane_n60020m1q2
  +
|Category = misc
  +
|System-Class = AP-LTI-FOS
  +
|nstates = 60020
  +
|ninputs = 1
  +
|noutputs = 2
  +
|nparameters = 2
  +
|components = A, B, C, E
  +
|License = NA
  +
|Creator = [[User:Feng]]
  +
|Editor =
  +
* [[User:Feng]]
  +
* [[User:Himpe]]
  +
|Zenodo-link = NA
  +
}}
  +
 
==Description==
   
 
<figure id="fig:tempprof">[[File:Fig_1.png|right|frame|<caption>silicon nitride membrane temperature profile</caption>]]</figure>
 
<figure id="fig:tempprof">[[File:Fig_1.png|right|frame|<caption>silicon nitride membrane temperature profile</caption>]]</figure>
   
  +
A '''silicon nitride membrane''' ([[wikipedia:Silicon_nitride|SiN]] membrane) <ref name="bechthold10"/> can be a part of a gas sensor,
A silicon nitride membrane (SiN membrane) <ref>T. Bechtold, D. Hohfeld, E. B. Rudnyi and M. Guenther, "<span class="plainlinks">[http://dx.doi.org/10.1088/0960-1317/20/4/045030 Efficient extraction of thin-film thermal parameters from numerical models via parametric model order reduction]</span>", J. Micromech. Microeng. 20(2010) 045030 (13pp).</ref> can be a part of a gas sensor, but also a part of an infra-red sensor, a michrothruster, an optimical filter etc. This structure resembles
 
  +
but also a part of an infra-red sensor, a microthruster, an optical filter etc.
a microhotplate similar to other micro-fabricated devices
 
  +
This structure resembles a microhotplate similar to other micro-fabricated devices such as gas sensors <ref name="spannhake05"/> and infrared sources <ref name="graf04"/> (See also [[Gas_Sensor|Gas Sensor Benchmark]]).
such as gas sensors <ref>J. Spannhake, O. Schulz, A. Helwig, G. Müller and T. Doll, "<span class="plainlinks">[http://dx.doi.org/10.1109/ICSENS.2005.1597811 Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems]</span>", Proc. Sensors, 762-765, 2005.</ref> and infrared sources <ref>M. Graf, D. Barrettino, S. Taschini, C. Hagleitner, A. Hierlemann and H. Baltes, "<span class="plainlinks">[http://dx.doi.org/10.1021/ac035432h Metal oxide-based monolithic complementary metal oxide semiconductor gas sensor microsystem]</span>", Anal. Chem., 76:4437-4445, 2004.</ref>. See <xr id="fig:tempprof"/>, the temperature profile for the SiN membrane.
 
  +
See Fig.&nbsp;1, the temperature profile for the SiN membrane.
   
 
The governing heat transfer equation in the membrane is:
 
The governing heat transfer equation in the membrane is:
   
<math> \nabla \cdot (\kappa \nabla T)+Q - \rho c_p \cdot \frac{\partial T}{\partial t}=0 </math>
+
:<math> \nabla \cdot (\kappa \nabla T)+Q - \rho c_p \cdot \frac{\partial T}{\partial t}=0 </math>
   
where <math>\kappa </math> is the thermal conductivity in <math>W m^{-1} K^{-1}</math>, cp is the specific heat capacity in <math> J kg^{-1} K^{-1}</math>, <math>\rho</math> is the mass density in <math>kg m^{-3}</math> and <math>T</math> is the temperature distribution. We assume a homogeneous heat generation rate over a lumped resistor:
+
where <math>\kappa </math> is the thermal conductivity in <math>W m^{-1} K^{-1}</math>,
  +
<math>c_p</math> is the specific heat capacity in <math>J kg^{-1} K^{-1}</math>,
  +
<math>\rho</math> is the mass density in <math>kg m^{-3}</math> and <math>T</math> is the temperature distribution.
  +
We assume a homogeneous heat generation rate over a lumped resistor:
   
<math>Q = \frac{u^2(t)}{R(T)}</math>
+
:<math>Q = \frac{u^2(t)}{R(T)}</math>
   
 
with <math>Q</math> the heat generation rate per unit volume in <math>W m^{-3}</math>.
 
with <math>Q</math> the heat generation rate per unit volume in <math>W m^{-3}</math>.
We use the initial condition <math> T_0 = 273K </math>, and the
+
We use the initial condition <math>T_0 = 273K</math>,
Dirichlet boundary condition <math> T = 273 K </math> at the bottom of
+
and the Dirichlet boundary condition <math>T = 273 K</math> at the bottom of the computational domain.
the computational domain.
 
   
 
The convection boundary condition at the top of the membrane is
 
The convection boundary condition at the top of the membrane is
   
<math>
+
:<math>
 
q=h(T-T_{air}),
 
q=h(T-T_{air}),
 
</math>
 
</math>
Line 38: Line 57:
 
==Discretization==
 
==Discretization==
   
Under the above convection boundary condition and assuming <math>T_{air}=0</math>, finite element discretization of the heat transfer model leads to the parametrized system as below,
+
Under the above convection boundary condition and assuming <math>T_{air}=0</math>,
  +
a finite element discretization of the heat transfer model leads to the parametrized system as below,
   
<math>
+
:<math>
 
(E_0+\rho c_p \cdot E_1) \dot{T} +(A_0 +\kappa \cdot A_1 +h \cdot A_2)T = B \frac{u^2(t)}{R(T)}, \quad
 
(E_0+\rho c_p \cdot E_1) \dot{T} +(A_0 +\kappa \cdot A_1 +h \cdot A_2)T = B \frac{u^2(t)}{R(T)}, \quad
 
y=C T,
 
y=C T,
 
</math>
 
</math>
   
where the volumetric heat capacity <math>\rho c_p</math>, thermal conductivity
+
where the volumetric heat capacity <math>\rho c_p</math>,
<math>\kappa</math> and the heat transfer coefficient <math>h</math> between the membrane
+
thermal conductivity <math>\kappa</math> and the heat transfer coefficient <math>h</math> between the membrane are kept as parameters.
are kept as parameters. The volumetric hear capacity <math>\rho c_p</math> is the product of two independent variables, i.e. the specific hear capacity <math>c_p</math> and the density <math>\rho</math>. The range of interest for the four independent variables are respectively <math>\kappa \in [2, 5]</math>, <math>c_p \in [400, 750]</math>, <math>\rho \in [3000,3200]</math>, <math> h \in [10, 12]</math>. The frequency range is <math>f \in [0,50]Hz</math>.
+
The volumetric hear capacity <math>\rho c_p</math> is the product of two independent variables,
  +
i.e. the specific hear capacity <math>c_p</math> and the density <math>\rho</math>.
  +
The range of interest for the four independent variables are <math>\kappa \in [2, 5]</math>, <math>c_p \in [400, 750]</math>, <math>\rho \in [3000,3200]</math> and <math> h \in [10, 12]</math> respectively.
  +
The frequency range is <math>f \in [0,25]Hz</math>.
  +
What is of interest is the output in time domain.
  +
The interesting time interval is <math>t \in [0,0.04]s</math>.
   
Here <math>R(T)</math> is either a constant heat resistivity <math>R(T)=R_0</math>, or <math>R(T)=R_0(1+\alpha T)</math>, which depends linearly on the temperature. Here we use <math>R_0=274.94 \Omega</math> and temperature coefficient <math>\alpha=2.293 \pm 0.006 \times 10^{-4}</math>. The model was created and meshed in ANSYS. It contains a constant load vector <math>B</math> corresponding to the constant input power of <math>2.49mW</math>. The number of degrees of freedom is <math>n=60,020</math>.
+
Here <math>R(T)</math> is either a constant heat resistivity <math>R(T)=R_0</math>, or <math>R(T)=R_0(1+\alpha T)</math>,
  +
which depends linearly on the temperature.
  +
Here we use <math>R_0=274.94 \Omega</math> and temperature coefficient <math>\alpha=2.293 \pm 0.006 \times 10^{-4}</math>.
  +
The model was created and meshed in ANSYS. It contains a constant load vector <math>B</math> corresponding to the constant input power of <math>2.49mW</math>.
  +
The number of degrees of freedom is <math>n=60,020</math>.
   
  +
The input function <math>u(t)</math> is a step function with the value <math>1</math>,
The input function <math>u(t)</math> is a step function with the value <math>1</math>, which disappears at the time <math>0.02s</math>. This means between <math>0s</math> and <math>0.02s</math> input is one and after that it is zero. However, be aware that <math>u(t)</math> is just a factor with which the load vector B is multiplied and which corresponds to the heating power of <math>2.49mW</math>. This means if one keeps <math>u(t)</math> as suggested above, the device is heated with <math>2.49mW</math> for the time length of 0.02s and after that the heating is turned off. If for whatever reason, one wants the heating power to be <math>5mW</math>, then <math>u(t)</math> has to be set equal to two, etc...
 
  +
which disappears at the time <math>0.02s</math>.
When <math>R(T)=R_0(1+\alpha T)</math>, it is a function of the state vector <math>T</math> and hence, the system has non-linear input. (It is also called a weakly nonlinear system.)
 
  +
This means between <math>0s</math> and <math>0.02s</math> input is one and after that it is zero.
  +
However, be aware that <math>u(t)</math> is just a factor with which the load vector B is multiplied and which corresponds to the heating power of <math>2.49mW</math>.
  +
This means if one keeps <math>u(t)</math> as suggested above, the device is heated with <math>2.49mW</math> for the time length of 0.02s and after that the heating is turned off.
  +
If for whatever reason, one wants the heating power to be <math>5mW</math>, then <math>u(t)</math> has to be set equal to two, etc.
 
When <math>R(T)=R_0(1+\alpha T)</math>, it is a function of the state vector <math>T</math> and hence, the system has non-linear input (It is also called a weakly nonlinear system.).
   
 
==Data==
 
==Data==
   
The model is generated in ANSYS. The system matrices are in <span class="plainlinks">[http://math.nist.gov/MatrixMarket/ MatrixMarket]</span> format and can be downloaded here [[Media: SiN_membrane.tgz|SiN_membrane.tgz]].
+
The model is generated in ANSYS. The system matrices are in <span class="plainlinks">[http://math.nist.gov/MatrixMarket/ MatrixMarket]</span> format and can be downloaded here: [[Media: SiN_membrane.tgz|SiN_membrane.tgz]].
  +
  +
==Dimensions==
  +
  +
System structure:
  +
  +
:<math>
  +
\begin{array}{rcl}
  +
(E_1 + \rho c_p E_2)\dot{x}(t) &=& -(A_1 + \kappa A_2 + h A_3)x(t) + Bu(t) \\
  +
y(t) &=& Cx(t)
  +
\end{array}
  +
</math>
  +
  +
System dimensions:
  +
  +
<math>E_{1,2} \in \mathbb{R}^{60020 \times 60020}</math>,
  +
<math>A_{1,2,3} \in \mathbb{R}^{60020 \times 60020}</math>,
  +
<math>B \in \mathbb{R}^{60020 \times 1}</math>,
  +
<math>C \in \mathbb{R}^{2 \times 60020}</math>.
   
 
==References==
 
==References==
   
<references/>
+
<references>
 
 
 
<ref name="bechthold10">T. Bechtold, D. Hohfeld, E. B. Rudnyi and M. Guenther, "<span class="plainlinks">[https://doi.org/10.1088/0960-1317/20/4/045030 Efficient extraction of thin-film thermal parameters from numerical models via parametric model order reduction]</span>", J. Micromech. Microeng. 20(4): 045030, 2010.</ref>
   
  +
<ref name="spannhake05">J. Spannhake, O. Schulz, A. Helwig, G. Müller and T. Doll, "<span class="plainlinks">[https://doi.org/10.1109/ICSENS.2005.1597811 Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems]</span>", Proc. Sensors: 762--765, 2005.</ref>
==Contact==
 
   
 
<ref name="graf04">M. Graf, D. Barrettino, S. Taschini, C. Hagleitner, A. Hierlemann and H. Baltes, "<span class="plainlinks">[https://doi.org/10.1021/ac035432h Metal oxide-based monolithic complementary metal oxide semiconductor gas sensor microsystem]</span>", Anal. Chem., 76(15): 4437--4445, 2004.</ref>
  +
  +
</references>
  +
 
==Contact==
 
'' [[User:Feng|Lihong Feng]] ''
 
'' [[User:Feng|Lihong Feng]] ''
   
[http://simulation.uni-freiburg.de/staff/profiles/DrTamaraBechtold Tamara Bechtold]
+
[http://www.igs.uni-rostock.de/mitarbeiter/tamara-bechtold/ Tamara Bechtold]

Latest revision as of 11:40, 30 November 2023


Silicon Nitride Membrane
Background
Benchmark ID

siliconNitrideMembrane_n60020m1q2

Category

misc

System-Class

AP-LTI-FOS

Parameters
nstates
60020
ninputs

1

noutputs

2

nparameters

2

components

A, B, C, E

Copyright
License

NA

Creator

Lihong Feng

Editor
Location

NA


Description

Figure 1: silicon nitride membrane temperature profile

A silicon nitride membrane (SiN membrane) [1] can be a part of a gas sensor, but also a part of an infra-red sensor, a microthruster, an optical filter etc. This structure resembles a microhotplate similar to other micro-fabricated devices such as gas sensors [2] and infrared sources [3] (See also Gas Sensor Benchmark). See Fig. 1, the temperature profile for the SiN membrane.

The governing heat transfer equation in the membrane is:

 \nabla \cdot (\kappa \nabla T)+Q - \rho c_p \cdot \frac{\partial T}{\partial t}=0

where \kappa is the thermal conductivity in W m^{-1} K^{-1}, c_p is the specific heat capacity in J kg^{-1} K^{-1}, \rho is the mass density in kg m^{-3} and T is the temperature distribution. We assume a homogeneous heat generation rate over a lumped resistor:

Q = \frac{u^2(t)}{R(T)}

with Q the heat generation rate per unit volume in W m^{-3}. We use the initial condition T_0 = 273K, and the Dirichlet boundary condition T = 273 K at the bottom of the computational domain.

The convection boundary condition at the top of the membrane is


q=h(T-T_{air}),

where h is the heat transfer coefficient between the membrane and the ambient air in W m^{-2} K^{-1}.

Discretization

Under the above convection boundary condition and assuming T_{air}=0, a finite element discretization of the heat transfer model leads to the parametrized system as below,


(E_0+\rho c_p \cdot E_1) \dot{T} +(A_0 +\kappa \cdot A_1 +h \cdot A_2)T = B \frac{u^2(t)}{R(T)}, \quad
y=C T,

where the volumetric heat capacity \rho c_p, thermal conductivity \kappa and the heat transfer coefficient h between the membrane are kept as parameters. The volumetric hear capacity \rho c_p is the product of two independent variables, i.e. the specific hear capacity c_p and the density \rho. The range of interest for the four independent variables are \kappa \in [2, 5], c_p \in [400, 750], \rho \in [3000,3200] and  h \in [10, 12] respectively. The frequency range is f \in [0,25]Hz. What is of interest is the output in time domain. The interesting time interval is t \in [0,0.04]s.

Here R(T) is either a constant heat resistivity R(T)=R_0, or R(T)=R_0(1+\alpha T), which depends linearly on the temperature. Here we use R_0=274.94 \Omega and temperature coefficient \alpha=2.293 \pm 0.006 \times 10^{-4}. The model was created and meshed in ANSYS. It contains a constant load vector B corresponding to the constant input power of 2.49mW. The number of degrees of freedom is n=60,020.

The input function u(t) is a step function with the value 1, which disappears at the time 0.02s. This means between 0s and 0.02s input is one and after that it is zero. However, be aware that u(t) is just a factor with which the load vector B is multiplied and which corresponds to the heating power of 2.49mW. This means if one keeps u(t) as suggested above, the device is heated with 2.49mW for the time length of 0.02s and after that the heating is turned off. If for whatever reason, one wants the heating power to be 5mW, then u(t) has to be set equal to two, etc. When R(T)=R_0(1+\alpha T), it is a function of the state vector T and hence, the system has non-linear input (It is also called a weakly nonlinear system.).

Data

The model is generated in ANSYS. The system matrices are in MatrixMarket format and can be downloaded here: SiN_membrane.tgz.

Dimensions

System structure:


\begin{array}{rcl}
(E_1 + \rho c_p E_2)\dot{x}(t) &=& -(A_1 + \kappa A_2 + h A_3)x(t) + Bu(t) \\
y(t) &=& Cx(t)
\end{array}

System dimensions:

E_{1,2} \in \mathbb{R}^{60020 \times 60020}, A_{1,2,3} \in \mathbb{R}^{60020 \times 60020}, B \in \mathbb{R}^{60020 \times 1}, C \in \mathbb{R}^{2 \times 60020}.

References

  1. T. Bechtold, D. Hohfeld, E. B. Rudnyi and M. Guenther, "Efficient extraction of thin-film thermal parameters from numerical models via parametric model order reduction", J. Micromech. Microeng. 20(4): 045030, 2010.
  2. J. Spannhake, O. Schulz, A. Helwig, G. Müller and T. Doll, "Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems", Proc. Sensors: 762--765, 2005.
  3. M. Graf, D. Barrettino, S. Taschini, C. Hagleitner, A. Hierlemann and H. Baltes, "Metal oxide-based monolithic complementary metal oxide semiconductor gas sensor microsystem", Anal. Chem., 76(15): 4437--4445, 2004.

Contact

Lihong Feng

Tamara Bechtold