Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Models"

m (reorder models)
Line 43: Line 43:
 
<math>D : \mathbb{R} \to \mathbb{R}^{q \times m}</math>.
 
<math>D : \mathbb{R} \to \mathbb{R}^{q \times m}</math>.
   
 
===Affine Parametric LTI-FOS (AP-LTI-FOS)===
===Quadratic-Bilinear System (QBS)===
 
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{j=1}^m N_j x(t) u_j(t) + B u(t), \\
+
(E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) &= (A + \sum_{i=1}^{\ell} p^A_i A_i) x(t) + (B + \sum_{i=1}^{\ell} p^B_i B_i)u(t),\\
y(t) &= Cx(t) + Du(t),
+
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i)x(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
Line 54: Line 54:
 
with
 
with
   
<math>E \in \mathbb{R}^{n \times n}</math>,
+
<math>E, E_i \in \mathbb{R}^{n \times n}</math>;
<math>A \in \mathbb{R}^{n \times n}</math>,
+
<math>A, A_i \in \mathbb{R}^{n \times n}</math>;
<math>H \in \mathbb{R}^{n \times n^2}</math>,
+
<math>B, B_i \in \mathbb{R}^{n \times m}</math>; and
<math>N_j \in \mathbb{R}^{n \times n}</math>,
+
<math>C, C_i \in \mathbb{R}^{q \times n}</math>,
<math>B \in \mathbb{R}^{n \times m}</math>,
+
for all <math>i = 1, \ldots, \ell</math>.
<math>C \in \mathbb{R}^{q \times n}</math>,
 
<math>D \in \mathbb{R}^{q \times m}</math>.
 
   
===Nonlinear Time-Invariant First-Order System (NLTI-FOS)===
+
===Linear Time-Invariant Second-Order System (LTI-SOS)===
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
E\dot{x}(t) &= Ax(t) + f(x(t),u(t)) + Bu(t),\\
+
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
y(t) &= Cx(t) + Du(t),
+
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
Line 73: Line 71:
 
with
 
with
   
 
<math>M \in \mathbb{R}^{n \times n}</math>,
 
<math>E \in \mathbb{R}^{n \times n}</math>,
 
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>A \in \mathbb{R}^{n \times n}</math>,
+
<math>K \in \mathbb{R}^{n \times n}</math>,
 
<math>B \in \mathbb{R}^{n \times m}</math>,
 
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>C \in \mathbb{R}^{q \times n}</math>,
+
<math>C_p, C_v \in \mathbb{R}^{q \times n}</math>,
<math>D \in \mathbb{R}^{q \times m}</math>,
+
<math>D \in \mathbb{R}^{q \times m}</math>.
<math>f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n</math>.
 
   
 
When <math>C_v = 0</math>, we denote <math>C = C_p</math>.
===Affine Parametric LTI-FOS (AP-LTI-FOS)===
 
  +
 
===Affine Parametric LTI-SOS (AP-LTI-SOS)===
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
(E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) &= (A + \sum_{i=1}^{\ell} p^A_i A_i) x(t) + (B + \sum_{i=1}^{\ell} p^B_i B_i)u(t),\\
+
(M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= (B + \sum_{i=1}^{\ell} p^B_i B_i) u(t), \\
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i)x(t),
+
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i) x(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
Line 91: Line 91:
 
with
 
with
   
 
<math>M, M_i \in \mathbb{R}^{n \times n}</math>;
 
<math>E, E_i \in \mathbb{R}^{n \times n}</math>;
 
<math>E, E_i \in \mathbb{R}^{n \times n}</math>;
<math>A, A_i \in \mathbb{R}^{n \times n}</math>;
+
<math>K, K_i \in \mathbb{R}^{n \times n}</math>;
 
<math>B, B_i \in \mathbb{R}^{n \times m}</math>; and
 
<math>B, B_i \in \mathbb{R}^{n \times m}</math>; and
 
<math>C, C_i \in \mathbb{R}^{q \times n}</math>,
 
<math>C, C_i \in \mathbb{R}^{q \times n}</math>,
 
for all <math>i = 1, \ldots, \ell</math>.
 
for all <math>i = 1, \ldots, \ell</math>.
   
===Linear Time-Invariant Second-Order System (LTI-SOS)===
+
===Quadratic-Bilinear System (QBS)===
   
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
+
E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{j=1}^m N_j x(t) u_j(t) + B u(t), \\
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
+
y(t) &= Cx(t) + Du(t),
 
\end{align}
 
\end{align}
 
</math>
 
</math>
Line 108: Line 109:
 
with
 
with
   
<math>M \in \mathbb{R}^{n \times n}</math>,
 
 
<math>E \in \mathbb{R}^{n \times n}</math>,
 
<math>E \in \mathbb{R}^{n \times n}</math>,
<math>K \in \mathbb{R}^{n \times n}</math>,
+
<math>A \in \mathbb{R}^{n \times n}</math>,
  +
<math>H \in \mathbb{R}^{n \times n^2}</math>,
  +
<math>N_j \in \mathbb{R}^{n \times n}</math>,
 
<math>B \in \mathbb{R}^{n \times m}</math>,
 
<math>B \in \mathbb{R}^{n \times m}</math>,
<math>C_p, C_v \in \mathbb{R}^{q \times n}</math>,
+
<math>C \in \mathbb{R}^{q \times n}</math>,
 
<math>D \in \mathbb{R}^{q \times m}</math>.
 
<math>D \in \mathbb{R}^{q \times m}</math>.
   
  +
===Nonlinear Time-Invariant First-Order System (NLTI-FOS)===
When <math>C_v = 0</math>, we denote <math>C = C_p</math>.
 
  +
 
:<math>
 
\begin{align}
  +
E\dot{x}(t) &= Ax(t) + f(x(t),u(t)) + Bu(t),\\
  +
y(t) &= Cx(t) + Du(t),
 
\end{align}
 
</math>
  +
 
with
  +
  +
<math>E \in \mathbb{R}^{n \times n}</math>,
  +
<math>A \in \mathbb{R}^{n \times n}</math>,
  +
<math>B \in \mathbb{R}^{n \times m}</math>,
 
<math>C \in \mathbb{R}^{q \times n}</math>,
 
<math>D \in \mathbb{R}^{q \times m}</math>,
 
<math>f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n</math>.
   
 
===Nonlinear Time-Invariant Second-Order System (NLTI-SOS)===
 
===Nonlinear Time-Invariant Second-Order System (NLTI-SOS)===
Line 138: Line 156:
   
 
When <math>C_v = 0</math>, we denote <math>C = C_p</math>.
 
When <math>C_v = 0</math>, we denote <math>C = C_p</math>.
 
===Affine Parametric LTI-SOS (AP-LTI-SOS)===
 
 
:<math>
 
\begin{align}
 
(M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= (B + \sum_{i=1}^{\ell} p^B_i B_i) u(t), \\
 
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i) x(t),
 
\end{align}
 
</math>
 
 
with
 
 
<math>M, M_i \in \mathbb{R}^{n \times n}</math>;
 
<math>E, E_i \in \mathbb{R}^{n \times n}</math>;
 
<math>K, K_i \in \mathbb{R}^{n \times n}</math>;
 
<math>B, B_i \in \mathbb{R}^{n \times m}</math>; and
 
<math>C, C_i \in \mathbb{R}^{q \times n}</math>,
 
for all <math>i = 1, \ldots, \ell</math>.
 

Revision as of 21:10, 20 April 2023


Benchmark Model Templates

This page specifies templates for the types of models used as benchmark systems. In particular, the naming schemes established here are used in the corresponding data sets for all benchmarks. For example, A always serves as the name of the component matrix applied to the state x(t) in a linear time-invariant system. For all models we assume an input u : \mathbb{R} \to \mathbb{R}^m, with components u_j, j = 1, \ldots, m, a state x : \mathbb{R} \to \mathbb{R}^n, and an output y : \mathbb{R} \to \mathbb{R}^q. For all parametric models, we assume each component has \ell parameters; in cases where a component has fewer than \ell parameters, the extras are treated as 0. Some benchmarks (e.g., Bone Model) have a constant forcing term, in which case, it is assumed that u(t) is identically 1.

Linear Time-Invariant First-Order System (LTI-FOS)


\begin{align}
E\dot{x}(t) &= Ax(t) + Bu(t),\\
y(t) &= Cx(t) + Du(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}.

Linear Time-Varying First-Order System (LTV-FOS)


\begin{align}
E(t)\dot{x}(t) &= A(t)x(t) + B(t)u(t),\\
y(t) &= C(t)x(t) + D(t)u(t),
\end{align}

with

E : \mathbb{R} \to \mathbb{R}^{n \times n}, A : \mathbb{R} \to \mathbb{R}^{n \times n}, B : \mathbb{R} \to \mathbb{R}^{n \times m}, C : \mathbb{R} \to \mathbb{R}^{q \times n}, D : \mathbb{R} \to \mathbb{R}^{q \times m}.

Affine Parametric LTI-FOS (AP-LTI-FOS)


\begin{align}
(E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) &= (A + \sum_{i=1}^{\ell} p^A_i A_i) x(t) + (B + \sum_{i=1}^{\ell} p^B_i B_i)u(t),\\
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i)x(t),
\end{align}

with

E, E_i \in \mathbb{R}^{n \times n}; A, A_i \in \mathbb{R}^{n \times n}; B, B_i \in \mathbb{R}^{n \times m}; and C, C_i \in \mathbb{R}^{q \times n}, for all i = 1, \ldots, \ell.

Linear Time-Invariant Second-Order System (LTI-SOS)


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t), \\
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
\end{align}

with

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C_p, C_v \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}.

When C_v = 0, we denote C = C_p.

Affine Parametric LTI-SOS (AP-LTI-SOS)


\begin{align}
(M + \sum_{i=1}^{\ell} p^M_i M_i)\ddot{x}(t) + (E + \sum_{i=1}^{\ell} p^E_i E_i)\dot{x}(t) + (K + \sum_{i=1}^{\ell} p^K_i K_i)x(t) &= (B + \sum_{i=1}^{\ell} p^B_i B_i) u(t), \\
y(t) &= (C + \sum_{i=1}^{\ell} p^C_i C_i) x(t),
\end{align}

with

M, M_i \in \mathbb{R}^{n \times n}; E, E_i \in \mathbb{R}^{n \times n}; K, K_i \in \mathbb{R}^{n \times n}; B, B_i \in \mathbb{R}^{n \times m}; and C, C_i \in \mathbb{R}^{q \times n}, for all i = 1, \ldots, \ell.

Quadratic-Bilinear System (QBS)


\begin{align}
 E\dot{x}(t) &= A x(t) + H x(t) \otimes x(t) + \sum_{j=1}^m N_j x(t) u_j(t) + B u(t), \\
 y(t) &= Cx(t) + Du(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, H \in \mathbb{R}^{n \times n^2}, N_j \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}.

Nonlinear Time-Invariant First-Order System (NLTI-FOS)


\begin{align}
E\dot{x}(t) &= Ax(t) + f(x(t),u(t)) + Bu(t),\\
y(t) &= Cx(t) + Du(t),
\end{align}

with

E \in \mathbb{R}^{n \times n}, A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}, f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n.

Nonlinear Time-Invariant Second-Order System (NLTI-SOS)


\begin{align}
M \ddot{x}(t) + E \dot{x}(t) + K x(t) &= B u(t) + F f(x(t),u(t)), \\
y(t) &= C_p x(t) + C_v \dot{x}(t) + D u(t),
\end{align}

with

M \in \mathbb{R}^{n \times n}, E \in \mathbb{R}^{n \times n}, K \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, F \in \mathbb{R}^{n \times n}, C_p, C_v \in \mathbb{R}^{q \times n}, D \in \mathbb{R}^{q \times m}, f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n.

When C_v = 0, we denote C = C_p.