Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki
Revision as of 10:42, 11 June 2025 by Schuetz2 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


Description

This procedural benchmark generates an all-pass SISO system based on [1]. For an all-pass system, the transfer function has the property g(s)g(-s) = \sigma^2, \sigma > 0, or (equivalently) the controllability and observability Gramians are quasi inverse to each other: W_C W_O = \sigma I, which means this system has a single Hankel singular value of multiplicity of the system's order. The system matrices are constructed based on the scheme:


\begin{align}
A &=
\begin{pmatrix}
  a_{1,1} & -\alpha_1 \\
  \alpha_1 & 0 & -\alpha_2 \\
  & \alpha_2 & 0 & \ddots \\
  & & \ddots & \ddots & -\alpha_{N-1} \\
  & & & \alpha_{N-1} & 0
\end{pmatrix}, \\
B &=
\begin{pmatrix}
  b_1 \\
  0 \\
  \vdots \\
  0
\end{pmatrix}, \\
C &=
\begin{pmatrix}
  s_1 b_1 & 0 & \cdots & 0
\end{pmatrix}, \\
D &= -s_1 \sigma. 
\end{align}

We choose s_1 \in \{-1,1\} to be s_1 \equiv -1, as this makes the system state-space-anti-symmetric. Furthermore, b_1 = 1 and \sigma = 1, which makes a_{1,1} = -\frac{b_1^2}{2 \sigma} = -\frac{1}{2}.

Data

This benchmark is procedural and the state dimensions can be chosen. Use the following MATLAB code to generate a random system as described above:

function [A,B,C,D] = allpass(n)
% allpass (all-pass system)
% by Christian Himpe, 2020
% released under BSD 2-Clause License
%*

    A = gallery('tridiag',n,-1,0,1);
    A(1,1) = -0.5;
    B = sparse(1,1,1,n,1);
    C = -B';
    D = 1;
end

The function call requires one argument; the number of states n. The return value consists of four matrices; the system matrix A, the input matrix B, the output matrix C, and the feed-through matrix D.

[A,B,C,D] = allpass(n);

An equivalent Python code is

from scipy.sparse import diags, lil_matrix

def allpass(n):
    A = diags([-1, 0, 1], offsets=[-1, 0, 1], shape=(n, n), format='lil')
    A[0, 0] = -0.5
    A = A.tocsc()
    B = lil_matrix((n, 1))
    B[0, 0] = 1
    B = B.tocsc()
    C = -B.T
    D = 1
    return A, B, C, D

Dimensions


\begin{align}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align}

System dimensions:

A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}, D \in \mathbb{R}.

Citation

To cite this benchmark, use the following references:

  • For the benchmark itself and its data:
The MORwiki Community, All-Pass System. MORwiki - Model Order Reduction Wiki, 2020. http://modelreduction.org/index.php/All_pass_system
@MISC{morwiki_allpass,
  author =       {{The MORwiki Community}},
  title =        {All-Pass System},
  howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  url =          {https://modelreduction.org/morwiki/index.php/All_pass_system},
  year =         {2020}
}

References