Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Synthetic parametric model

Introduction

On this page you will find a purely synthetic parametric model. The goal is to have a simple parametric model which one can use to experiment with different system orders, parameter values etc.

System description

The parameter \varepsilon scales the real part of the system poles, that is, p_i=\varepsilon a_i+jb_i. For a system in pole-residue form


 H(s) =  \sum_{i=1}^{n}\frac{r_i}{s-p_i} =  \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} ,


we can then write down the state-space realisation  H(s,\varepsilon) =  \widehat{C}\Big(sI-\varepsilon \widehat{A}_\varepsilon - \widehat{A}_0\Big)^{-1}\widehat{B}+D with


\varepsilon \widehat{A}_\varepsilon + \widehat{A}_0 = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] ,

\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.


Notice that the system matrices have complex entries.

For simplicity, assume that  n is even,  n=2k , and that all system poles are complex and ordered in complex conjugate pairs, i.e.

 p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k,

which, for real systems, also implies that the residues form complex conjugate pairs r_1, \bar{r}_1,\ldots , r_k, \bar{r}_k.

Then a realization with matrices having real entries is given by


 A_\varepsilon = T\widehat{A}_\varepsilon T^*, \quad A_0 = T\widehat{A}_0 T^*, \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,


with  T = \left[\begin{array}{ccc} T_0 & & \\ & \ddots & \\ & & T_0 \end{array}\right] and T_0 = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -j\\ 1 & j \end{array}\right].

Numerical values

The numerical values for the different variables are

  •  r_i equally spaced in [10^{-3}, 1], with  r_1 = 1 and  r_k = 10^{-3} .
  • a_i equally spaced in  [10^{-1}, 10^3],
  • b_i equally spaced in [10, 10^3],
  • \varepsilon \in [1,20].



In MATLAB this is easily done as follows test