Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Synthetic parametric model

Introduction

On this page you will find a purely synthetic parametric model. The goal is to have a simple parametric model which one can use to experiment with different system orders, parameter values etc.

System description

The parameter \varepsilon scales the real part of the system poles, that is, p_i=\varepsilon a_i+jb_i. For a system in pole-residue form


 H(s) =  \sum_{i=1}^{n}\frac{r_i}{s-p_i} =  \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} ,


we can then write down the state-space realisation


\widehat{A} = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] = \varepsilon \widehat{A}_\varepsilon + \widehat{A}_0,

\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.


Notice that the system matrices have complex entries.

For simplicity, assume that  n is even,  n=2k , and that all system poles are complex and ordered in complex conjugate pairs, i.e.

 p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k,

which also implies that the residues form complex conjugate pairs r_1, \bar{r}_1,\ldots , r_k, \bar{r}_k.

Then a realization with matrices having real entries is given by


 A = T\widehat{A}T^*, \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,


with  T = \left[\begin{array}{ccc} T_0 & & \\ & \ddots & \\ & & T_0 \end{array}\right] , for T_0 = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -j\\ 1 & j \end{array}\right].

Numerical values

The numerical values for the different variables are the following:

- the residues r_i, i = 1,\ldots,k are real and equally spaced in [10^{-3},1], with r_1 = 1] and r_k = 10^{-3}.

- \mathrm a_i, i = 1,\ldots,k linearly spaced between [10^{-1},10^3],

- \mathrm b_i, i = 1,\ldots,k linearly spaced between [10,10^3],

- \varepsilon \in [1,20],