Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

FitzHugh-Nagumo System

Revision as of 17:37, 20 November 2012 by Breiten (talk | contribs) (→‎Description)


Description

The FitzHugh-Nagumo system describes a prototype of an excitable system (e.g., a neuron). If the external stimulus i_0(t) exceeds a certain threshold value, the system will exhibit a characteristic excursion in phase space, before the variables v and w relax back to their rest values. This behaviour is typical for spike generations (=short elevation of membrane voltage v) in a neuron after stimulation by an external input current.

Here, we present the setting from [1], where the equations for the dynamical system read


\epsilon v_t(x,t)=\epsilon^2v_{xx}(x,t)+f(v(x,t))-w(x,t)+g,


 w_t(x,t)=hv(x,t)-\gamma w(x,t)+g,

with f(v)=v(v-0.1)(1-v) and initial and boundary conditions


  v(x,0)=0,\quad w(x,0)=0, \quad x\in [0,1],


  v_x(0,t)=-i_0(t), \quad v_x(1,t)\quad =0, \quad t \geq 0,

where \epsilon=0.015,\;h=0.5,\;\gamma=2,\;g=0.05,\;i_0(t)=5\cdot
10^4t^3 \exp(-15t). In [1], the previous system of coupled nonlinear PDEs is spatially discretized by means of a finite difference scheme with k=512 nodes for each PDE. Hence, one obtains a nonlinear (cubic) system of ODEs with state dimension n=1024.

File:FHN.jpg

References

Contact information:

Tobias Breiten