Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Hydro-Electric Open Channel

Under Construction.png Note: This page has not been verified by our editors.


Description

Motivation

The so-called Saint-Venant equations are largely used in the hydraulic domain to model the dynamics of an open channel flow. These equations consist of two nonlinear hyperbolic PDEs. In the considered benchmark, under mild simplifying assumptions detailed in [1], the St Venant PDE equations describing the height variation h of the river as a function of the inflow q_i and outflow q_o variations, at location x (x\in[0\,\,L], L\in\mathbb R_+), obtained around some flow and height linearisation point, can be formulated as follows:


h(x,s) = \mathbf{G_i}(x,s)q_i(s) - \mathbf{G_o}(x,s)q_o(s) = \mathbf H(x,s) u(s).

The \mathbf G_i and \mathbf G_o functions are irrational and read


\mathbf{G_i}(x,s)= \dfrac{\lambda_1(s)e^{\lambda_2(s)L+\lambda_1(s)x}-\lambda_2(s)e^{\lambda_1(s)L+\lambda_2(s)x}}{B_0s(e^{\lambda_1(s)L}-e^{\lambda_2(s)L})}

and


\mathbf{G_o}(x,s)= \dfrac{\lambda_1(s)e^{\lambda_1(s)x}-\lambda_2(s)e^{\lambda_2(s)x}}{B_0s(e^{\lambda_1(s)L}-e^{\lambda_2(s)L})}

Considere data

The benchmark contains the above irrational model description together with the numerical data as used in[1]

Origin

Data

Dimensions

Citation

References

Contact

  1. 1.0 1.1 V. Dalmas, G. Robert, C. Poussot-Vassal, I. Pontes-Duff and C. Seren, "From infinite dimensional modelling to parametric reduced order approximation: Application to open-channel flow for hydroelectricity", in Proceedings of the European Control Conference (ECC), Aalborg, Denmark, July, 2016, pp. 1982-1987, DOI: https://doi.org/10.1109/ECC.2016.7810582 Cite error: Invalid <ref> tag; name "Dalmas2016" defined multiple times with different content