| Line 27: | Line 27: | ||
<math> p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k, </math> |
<math> p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k, </math> |
||
| − | + | and the residues also form complex conjugate pairs |
|
| + | |||
| + | <math> r_1 = c_1+jd_1, r_2 = c_1-jd_1, \ldots, r_{n-1} = c_k+jd_k, r_n = c_k-jd_k. </math> |
||
| + | |||
Then a realization with matrices having real entries is given by |
Then a realization with matrices having real entries is given by |
||
| − | :<math> A_\varepsilon = |
+ | :<math> A_\varepsilon = \left[\begin{array}{ccc} A_\varepsilon^1 & & \\ & \ddots & \\ & & A_\varepsilon^k\end{array}\right], \quad A_0 = \left[\begin{array}{ccc} A_0^1 & & \\ & \ddots & \\ & & A_0^k\end{array}\right], \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,</math> |
Revision as of 12:22, 29 November 2011
Introduction
On this page you will find a purely synthetic parametric model. The goal is to have a simple parametric model which one can use to experiment with different system orders, parameter values etc.
System description
The parameter
scales the real part of the system poles, that is,
.
For a system in pole-residue form
we can write down the state-space realisation
with
Notice that the system matrices have complex entries.
For simplicity, assume that
is even,
, and that all system poles are complex and ordered in complex conjugate pairs, i.e.
and the residues also form complex conjugate pairs
Then a realization with matrices having real entries is given by
with
and
.
Numerical values
We construct a system of order
. The numerical values for the different variables are
,
equally spaced in
,
equally spaced in
,

.
In MATLAB the system matrices are easily formed as follows
n = 100;
a = -linspace(1e1,1e3,n/2);
b = linspace(1e1,1e3,n/2);

![\varepsilon \widehat{A}_\varepsilon + \widehat{A}_0 = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] ,](/morwiki/images/math/7/9/0/790c70f3fdd1a7fe269be673f52f5e8c.png)
![\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.](/morwiki/images/math/0/1/9/01952f4b905489c1f4686227dc13e409.png)
![A_\varepsilon = \left[\begin{array}{ccc} A_\varepsilon^1 & & \\ & \ddots & \\ & & A_\varepsilon^k\end{array}\right], \quad A_0 = \left[\begin{array}{ccc} A_0^1 & & \\ & \ddots & \\ & & A_0^k\end{array}\right], \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,](/morwiki/images/math/a/e/e/aeef3a5deb14ea180e1e2d0ecc0c4e53.png)