Kuerschner (talk | contribs) (Created page with "Category:Software Category:Linear algebra Category:sparse [https://sites.google.com/site/rommes/software DPA] stands for the '''D'''ominant '''P'''ole '''A'''lgor...") |
Kuerschner (talk | contribs) |
||
Line 3: | Line 3: | ||
[[Category:sparse]] |
[[Category:sparse]] |
||
− | [https://sites.google.com/site/rommes/software DPA] stands for the '''D'''ominant '''P'''ole '''A'''lgorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out [[Modal truncation]]. |
+ | [https://sites.google.com/site/rommes/software '''DPA'''] stands for the '''D'''ominant '''P'''ole '''A'''lgorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out [[Modal truncation]]. |
− | The following |
+ | The following implementations are available at [https://sites.google.com/site/rommes/software Joost Rommes'] homepage. |
− | * |
+ | * '''S'''ubspace '''A'''ccelerated '''D'''ominant '''P'''ole '''A'''lgorithm ('''SADPA''') for first order SISO systems <ref name="RomM06a"></ref><ref name="Rom07"></ref> , |
− | * |
+ | * '''S'''ubspace '''A'''ccelerated '''M'''IMO '''D'''ominant '''P'''ole Algorithm ('''SAMDP''') for first order MIMO systems <ref name="RomM06b"></ref><ref name="Rom07"></ref>, |
− | * |
+ | * '''S'''ubspace '''A'''ccelerated '''Q'''uadratic '''D'''ominant '''P'''ole '''A'''lgorithm ('''SAQDPA''') for second order SISO systems <ref name="RomM08"></ref><ref name="Rom07"></ref>, |
==References== |
==References== |
||
<references> |
<references> |
Revision as of 13:18, 29 April 2013
DPA stands for the Dominant Pole Algorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out Modal truncation.
The following implementations are available at Joost Rommes' homepage.
- Subspace Accelerated Dominant Pole Algorithm (SADPA) for first order SISO systems [1][2] ,
- Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP) for first order MIMO systems [3][2],
- Subspace Accelerated Quadratic Dominant Pole Algorithm (SAQDPA) for second order SISO systems [4][2],
References
<references> [1]
</ references>
Contact
Patrick Kürschner Joost Rommesr
- ↑ 1.0 1.1 J. Rommes and N. Martins, "Efficient computation of transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.3, pp.1218-1226, 2006
- ↑ 2.0 2.1 2.2 2.3 J. Rommes, "Methods for eigenvalue problems with applications in model order reduction", Ph.D. dissertation, Universiteit Utrecht, 2007.
- ↑ 3.0 3.1 J. Rommes and N. Martins, "Efficient computation of multivariable transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.4, pp.1471-1483, 2006
- ↑ 4.0 4.1 J. Rommes and N. Martins, "Computing transfer function dominant poles of large-scale second-order dynamical systems” SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.