Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Moment-matching method"

m
Line 20: Line 20:
 
Let <math>s=s_0+\sigma</math>, then, within the convergence radius of the series, we have
 
Let <math>s=s_0+\sigma</math>, then, within the convergence radius of the series, we have
   
<math>H(s_0 + \sigma)= L^T[(s_{0}+\sigma){I}-A]^{-1}B</math>
+
<math>H(s_0 + \sigma)= L^T[(s_{0}+\sigma){E}-A]^{-1}B</math>
   
<math>=L^T[\sigma { I}+(s_{0}{ I}-{ A})]^{-1}B</math>
+
<math>=L^T[\sigma { E}+(s_{0}{ E}-{ A})]^{-1}B</math>
   
<math>=L^T[{ I}-\sigma(s_0{ I}-{ A})^{-1}]^{-1}[-(s_0{ I}-{ A})]^{-1}B</math>
+
<math>=L^T[{ I}-\sigma(s_0{ E}-{ A})^{-1}E]^{-1}[-(s_0{ E}-{ A})]^{-1}B</math>
   
<math>=L^T[{ I}+\sigma(s_0{ I}- A )^{-1}+\sigma^2[(s_0{ I}-{ A})^{-1}]^{2}+\ldots]\times
+
<math>=L^T[{ I}+\sigma(s_0{ E}- A )^{-1}E+\sigma^2[(s_0{ E}-{ A})^{-1}]^{2}E+\ldots]\times
\quad({ A}-s_0{I})^{-1}B</math>
+
\quad({ A}-s_0{E})^{-1}B</math>
   
<math>=\sum \limits^\infty_{i=0}\underbrace{L^T[(s_0{ I}-{A})^{-1}]^i({ A}-s_0{ I})^{-1}B}_{:= m_i(s_0)} \, \sigma^i,</math>
+
<math>=\sum \limits^\infty_{i=0}\underbrace{L^T[(s_0{ E}-{A})^{-1}]^i({ A}-s_0{ E})^{-1}B}_{:= m_i(s_0)} \, \sigma^i,</math>
   
 
where <math>m_i(s_0)</math> are called the moments of the transfer function about <math>s_0</math> for <math>i=0,1,2,\ldots</math>.
 
where <math>m_i(s_0)</math> are called the moments of the transfer function about <math>s_0</math> for <math>i=0,1,2,\ldots</math>.

Revision as of 08:45, 4 April 2013


Description

The moment-matching methods are also called the Krylov subspace methods [1], as well as Padé approximation methods [2]. These methods are applicable for non-parametric linear time invariant systems, often the descriptor systems, e.g.


E \frac{dx(t)}{dt}=A x(t)+B u(t), \quad
y(t)=Cx(t),    \quad \quad (1)

They are very efficient in many engineering applications, circuit simulation, Microelectromechanical systems(MEMS) simulation, etc..

The basic steps are as follows. First, the transfer function

H(s)=Y(s)/U(s)=C(sE-A)^{-1}B

is expanded into a power series at an expansion point s_0\in\mathbb{C}\cup \infty.

Let s=s_0+\sigma, then, within the convergence radius of the series, we have

H(s_0 + \sigma)= L^T[(s_{0}+\sigma){E}-A]^{-1}B

=L^T[\sigma { E}+(s_{0}{ E}-{ A})]^{-1}B

=L^T[{ I}-\sigma(s_0{ E}-{ A})^{-1}E]^{-1}[-(s_0{ E}-{ A})]^{-1}B

=L^T[{ I}+\sigma(s_0{ E}- A )^{-1}E+\sigma^2[(s_0{ E}-{ A})^{-1}]^{2}E+\ldots]\times
\quad({ A}-s_0{E})^{-1}B

=\sum \limits^\infty_{i=0}\underbrace{L^T[(s_0{ E}-{A})^{-1}]^i({ A}-s_0{ E})^{-1}B}_{:= m_i(s_0)} \, \sigma^i,

where m_i(s_0) are called the moments of the transfer function about s_0 for i=0,1,2,\ldots. If the expansion point is chosen as zero then the moments simplify to m_i(0)=L^\mathrm{T}(-A^{-1})^{i+1}B. For s_0=\infty the moments are also called Markov parameters which can be computed by L^\mathrm{T} A^{i-1}B.

The goal in moment-matching model reduction is the construction of a reduced order system where some moments \hat m_i of the associated transfer function \hat H match some moments of the original transfer function H.

The matrices V and W for model order reduction can be computed from the vectors which are associated with the moments, for example, using a single expansion point s_0=0, by

\textrm{range}(V)=\textrm{span}\{{A}^{-1}B,({ A}^{-1})^2B, \ldots,({ A}^{-1})^{r}{B}\},

\textrm{range}(W)=\textrm{span}\{L, { A}^{-T}L,({ A}^{-T})^2L, \ldots
,({A}^{-T})^{r-1}L\}.

The reduced model is in the form of the system in (2) in Projection based MOR. The corresponding transfer function \hat H has good approximation properties around s_0, which matches the first 2r moments of H(s) at s_0.

Using a set of k distinct expansion points \{s_1,\cdots,s_k\}, the reduced model can be obtained by, e.g.,


\textrm{range}(V)=\textrm{span}\{(A-s_1 {I})^{-1}B,\ldots,(A-s_k {I})^{-1}B   \},

\textrm{range}(W)=\textrm{span}\{(A-s_1 {I})^{-T}L,\ldots,(A-s_k {I})^{-T}L \},

has order r=k and matches the first two moments at each s_j, j=1,\ldots,k, see [3].

It can be seen that the columns of V, W span Krylov subspaces which can easily be computed by Arnoldi or Lanczos methods [1][2]. In these algorithms only matrix-vector multiplications are used which are simple to implement and the complexity of the resulting methods is only O(n r^2).

References

[1] R.W. Freund, Model reduction methods based on Krylov subspaces. Acta Numerica, 12:267-319, 2003.

[2] P. Feldmann and R.W. Freund, Efficient linear circuit analysis by Pade approximation via the Lanczos process. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 14:639-649, 1995.

[3] E.J. Grimme, Krylov projection methods for model reduction. PhD thesis, Univ. Illinois, Urbana-Champaign, 1997.