Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Hankel-Norm Approximation"

m (Added curly bracket with system name.)
Line 11: Line 11:
 
Consider the standard linear-time invariant system
 
Consider the standard linear-time invariant system
   
::<math>\begin{align} \dot{x}(t) & = Ax(t) + Bu(t),\\ y(t) & = Cx(t) + Du(t), \end{align}</math>
+
::<math>G:\left\{ \begin{align} \dot{x}(t) & = Ax(t) + Bu(t),\\ y(t) & = Cx(t) + Du(t), \end{align} \right.</math>
   
 
with the matrices <math style="vertical-align: top;">A \in \mathbb{R}^{n \times n}</math>, <math style="vertical-align: top;">B \in \mathbb{R}^{n \times m}</math>, <math style="vertical-align: top;">C \in \mathbb{R}^{p \times n}</math> and <math style="vertical-align: top;">D \in \mathbb{R}^{p \times m}</math>.
 
with the matrices <math style="vertical-align: top;">A \in \mathbb{R}^{n \times n}</math>, <math style="vertical-align: top;">B \in \mathbb{R}^{n \times m}</math>, <math style="vertical-align: top;">C \in \mathbb{R}^{p \times n}</math> and <math style="vertical-align: top;">D \in \mathbb{R}^{p \times m}</math>.

Revision as of 17:37, 5 January 2018


The Hankel-norm approximation method is a model reduction approach that solves the best-approximation problem in the Hankel semi-norm[1].


Description

Consider the standard linear-time invariant system

G:\left\{ \begin{align} \dot{x}(t) & = Ax(t) + Bu(t),\\ y(t) & = Cx(t) + Du(t), \end{align} \right.

with the matrices A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n} and D \in \mathbb{R}^{p \times m}. For a system G, the Hankel operator \mathcal{H} maps past inputs u_{-} to future outputs y_{+} of the system, i.e., y_{+} = \mathcal{H}u_{-}. Then, the Hankel semi-norm of the system G is defined as the \mathcal{L}_{2}-induced norm of the Hankel opertor

\lVert G \rVert_{H} := \sup\limits_{u_{-} \in \mathcal{L}_{2}\left(-\infty, 0\right]}\frac{\lVert y_{+} \rVert_{\mathcal{L}_{2}}}{\lVert u_{-} \rVert_{\mathcal{L}_{2}}}.

If the system G is stable, the controllability and observability Gramians \mathcal{G}_{c} and \mathcal{G}_{o} of the system above are given as the unique positive semidefinite solutions of the two Lyapunov equations

\begin{align} A\mathcal{G}_{c} + \mathcal{G}_{c}A^{T} + BB^{T} & = 0,\\ A^{T}\mathcal{G}_{o} + \mathcal{G}_{o}A + C^{T}C & = 0. \end{align}

The Hankel singular values of the system G are then defined as the square-roots of the eigenvalues of the multiplied system Gramians, i.e., \sqrt{\Lambda(\mathcal{G}_{c}\mathcal{G}_{o})} = \{ \varsigma_{1}, \ldots, \varsigma_{n} \}. It can be shown, that the Hankel semi-norm of a system is given by the largest Hankel singular value \lVert G \rVert_{H} = \varsigma_{\text{max}}.

The idea of the Hankel-norm approximation method is, to construct a reduced-order model G_{r} of order r such that the error system \mathcal{E} = G - G_{r} has a scaled all-pass transfer function

\mathcal{E}(s)\mathcal{E}^{T}(-s) = \varsigma_{r + 1}^{2} I_{p},

with \varsigma_{r + 1} the (r + 1)-st Hankel singular value of the system G.

For such error systems, the Hankel semi-norm is known to be \lVert \mathcal{E} \rVert_{H} = \varsigma_{r + 1}.


Algorithm

Here, the algorithm of the Hankel-norm approximation method is shortly described [2]:

1. Compute a minimal balanced realization (\check{A}, \check{B}, \check{C}, D) using the balanced truncation square-root method.
2. Choose the Hankel singular value \varsigma_{r + 1}.
3. Permute the balanced realization such that the Gramians have the form
     \begin{align}\check{\mathcal{G}}_{c} = \check{\mathcal{G}}_{o} & = \mathrm{diag}(\varsigma_{1}, \ldots, \varsigma_{r}, \varsigma_{r + k + 1}, \ldots, \varsigma_{n}, \varsigma_{r + 1}I_{k})\\ & = \mathrm{diag}(\Sigma, \varsigma_{r + 1}I_{k}).\end{align}
4. Partition the resulting permuted system according to the Gramians
     \check{A} = \begin{bmatrix} A_{11} & A_{12}\\ A_{21} & A_{22}\end{bmatrix}, ~~~ \check{B} = \begin{bmatrix} B_{1}\\ B_{2}\end{bmatrix}, \check{C} = \begin{bmatrix} C_{1} & C_{2}\end{bmatrix},
   where A_{22} \in \mathbb{R}^{k \times k}, B_{2} \in \mathbb{R}^{k \times m} and C_{2} \in \mathbb{R}^{p \times k}.
5. Compute the transformation
     \begin{align}\tilde{A} & = \Gamma^{-1}(\varsigma_{r+1}^{2}A_{11}^{T} + \Sigma A_{11} \Sigma + \varsigma_{r+1}C_{1}^{T}UB_{1}^{T}),\\ \tilde{B} & = \Gamma^{-1}(\Sigma B_{1} - \varsigma_{r+1}C_{1}^{T}U),\\ \tilde{C} & = C_{1}\Sigma - \varsigma_{r+1}UB_{1}^{T},\\ \tilde{D} & = D + \varsigma_{r+1}U,\end{align}
   with U = \left(C_{2}^{T}\right)^{\dagger}B_{2} and \Gamma = \Sigma^{2} - \varsigma_{r+1}^{2}I_{n-k}.
6. Compute the additive decomposition
     \tilde{G}(s) = \tilde{C}(sI_{n-k} - \tilde{A})^{-1}\tilde{B} + \tilde{D} = G_{r}(s) + F(s),
   where F is anti-stable and G_{r} is the r-th order stable Hankel-norm approximation.


References

  1. K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L^{\infty}-error norms. Internat. J. Control, 39(6):1115-1193, 1984.
  2. P. Benner, E. S. Quintana-Ortí, and G. Quintana-Ortí. Computing optimal Hankel norm approximations of large-scale systems. In 2004 43rd IEEE Conference on Decision and Control (CDC), volume 3, pages 3078-3083, Atlantis, Paradise Island, Bahamas, December 2004. Institute of Electrical and Electronics Engineers.