Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Iterative Rational Krylov Algorithm"

Line 6: Line 6:
   
 
==Description==
 
==Description==
  +
  +
The iterative rational Krylov algorithm (IRKA) is an interpolation-based model reduction method for single-input-single-output linear time systems
  +
  +
:<equation id="gensys" shownumber>
  +
<math>
  +
E\dot{x}(t)=A x(t)+b u(t), \quad
  +
y(t)=c^Tx(t),\quad E,A\in\mathbb{R}^{n\times n},~b\in\mathbb{R}^{n},~c\in\mathbb{R}^{n}.\qquad (1)
  +
</math>
  +
</equation>
  +
  +
For a given system <math>G </math> and a prescribed reduced system order <math>r</math>, the goal of the algorithm is to find a local minimizer <math>\hat{G} </math> for the <math> H_2 </math> model reduction problem
  +
  +
:<math>
  +
||G-\hat{G} ||_{H_2} = \min_{\text{dim}(\tilde{G})=r} ||G-\hat{G}||_{H_2}.
  +
</math>
  +
  +
Initially investigated in <ref name="MeiL67"></ref>, first order necessary conditions for a local minimizer <math>\hat{G}</math> imply that its rational transfer function <math>\hat{G}(s)=\hat{c}^T (sI-\hat{A})^{-1}b</math> is a Hermite interpolant of the original transfer function at its reflected system poles, i.e.,
  +
  +
:<math>
  +
G(-\hat{\lambda}_i) = \hat{G}(-\hat{\lambda}_i), \quad G'(-\hat{\lambda}_i) = \hat{G}'(-\hat{\lambda}_i), \quad, i =1,\dots,r,
  +
</math>
  +
where <math>\{\hat{\lambda}_1,\dots,\hat{\lambda}_r\} </math> are assumed to be the single poles of <math> \hat{G} </math>. Based on the idea of rational interpolation by rational Krylov subspaces, in <ref name="GugAB08"></ref> the authors have picked up the optimality conditions and proposed to iteratively correct the projection subspaces. In pseudocode, the classical algorithm (IRKA) from <ref name="GugAB08"></ref> looks like
  +
  +
1. Make an initial selection of <math>\sigma_i </math> for <math>i=1,\dots,r </math> that is closed under conjugation and fix a convergence tolerance <math>tol</math>.
  +
2. Choose <math>V_r </math> and <math> W_r</math> so that <math>\text{Ran}(V_r) =\{(\sigma_1 I -A)^{-1}b,\dots,(\sigma_rI-A)^{-1}b \} </math>, <math>\text{Ran}(W_r) =\{(\sigma_1 I -A^T)^{-1}c,\dots, (\sigma_rI-A^T)^{-1}c \} </math> and <math> W_r^TV_r=I</math>.
  +
3. while (relative change in <math>\{\sigma_i\} > tol</math>)
  +
(a) <math>\hat{A} = W_r^TAV_r</math>
  +
(b) Assign <math>\sigma_i \leftarrow -\lambda_i(\hat{A}),</math> for <math> i=1,\dots,r</math>
  +
(c) Update <math>V_r</math> and <math>W_r</math> so that <math>\text{Ran}(V_r) =\{(\sigma_1 I -A)^{-1}b,\dots,(\sigma_rI-A)^{-1}b \} </math>, <math>\text{Ran}(W_r) =\{(\sigma_1 I -A^T)^{-1}c,\dots, (\sigma_rI-A^T)^{-1}c \} </math> and <math> W_r^TV_r=I</math>.
  +
4. <math>\hat{A} = W_r^TAV_r, \hat{b}= W_r^Tb, \hat{c}^T = c^TV_r.</math>
  +
  +
Although a rigorous convergence proof so far has only be given for symmetric state space systems <ref name="FlaBG12"></ref>, numerous experiments have shown that the algorithm often converges rapidly.
  +
  +
  +
==References==
  +
<references>
  +
  +
<ref name="MeiL67"> L. Meier, D.G. Luenberger, "<span class="plainlinks">[http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1098680&tag=1 Approximation of linear constant systems]</span>", IEEE Transactions on Automatic Control, vol.12, no.5, pp.585-588 1967</ref>
  +
  +
<ref name="GugAB08"> S. Gugercin, A.C. Antoulas, C. Beattie "<span class="plainlinks">[http://epubs.siam.org/doi/abs/10.1137/060666123 H2 Model Reduction for Large-Scale Linear Dynamical Systems]</span>", SIAM. J. Matrix Anal. & Appl., vol.30, no.2, pp.609-638 2008</ref>
  +
  +
  +
<ref name="FlaBG12"> G. Flagg, C. Beattie, S. Gugercin "<span class="plainlinks">[http://www.sciencedirect.com/science/article/pii/S0167691112000576 Convergence of the Iterative Rational Krylov Algorithm]</span>", Systems & Control Letters, vol.61, no.6, pp.688-691 2012</ref>
  +
  +
</ references>

Revision as of 09:07, 30 May 2013


Description

The iterative rational Krylov algorithm (IRKA) is an interpolation-based model reduction method for single-input-single-output linear time systems


E\dot{x}(t)=A x(t)+b u(t), \quad
y(t)=c^Tx(t),\quad E,A\in\mathbb{R}^{n\times n},~b\in\mathbb{R}^{n},~c\in\mathbb{R}^{n}.\qquad (1)
(1)

For a given system G and a prescribed reduced system order r, the goal of the algorithm is to find a local minimizer \hat{G} for the  H_2 model reduction problem


||G-\hat{G} ||_{H_2} = \min_{\text{dim}(\tilde{G})=r} ||G-\hat{G}||_{H_2}.

Initially investigated in [1], first order necessary conditions for a local minimizer \hat{G} imply that its rational transfer function \hat{G}(s)=\hat{c}^T (sI-\hat{A})^{-1}b is a Hermite interpolant of the original transfer function at its reflected system poles, i.e.,


G(-\hat{\lambda}_i) = \hat{G}(-\hat{\lambda}_i), \quad G'(-\hat{\lambda}_i) = \hat{G}'(-\hat{\lambda}_i), \quad, i =1,\dots,r,

where \{\hat{\lambda}_1,\dots,\hat{\lambda}_r\} are assumed to be the single poles of  \hat{G} . Based on the idea of rational interpolation by rational Krylov subspaces, in [2] the authors have picked up the optimality conditions and proposed to iteratively correct the projection subspaces. In pseudocode, the classical algorithm (IRKA) from [2] looks like

1. Make an initial selection of \sigma_i  for i=1,\dots,r  that is closed under conjugation and fix a convergence tolerance tol.
2. Choose V_r  and  W_r so that \text{Ran}(V_r) =\{(\sigma_1 I -A)^{-1}b,\dots,(\sigma_rI-A)^{-1}b \} , \text{Ran}(W_r) =\{(\sigma_1 I -A^T)^{-1}c,\dots,   (\sigma_rI-A^T)^{-1}c \}  and  W_r^TV_r=I.
3. while (relative change in \{\sigma_i\} > tol)
 (a) \hat{A} = W_r^TAV_r
 (b) Assign \sigma_i \leftarrow -\lambda_i(\hat{A}), for  i=1,\dots,r
 (c) Update V_r and W_r so that \text{Ran}(V_r) =\{(\sigma_1 I -A)^{-1}b,\dots,(\sigma_rI-A)^{-1}b \} , \text{Ran}(W_r) =\{(\sigma_1 I -A^T)^{-1}c,\dots,   (\sigma_rI-A^T)^{-1}c \}  and  W_r^TV_r=I.
4. \hat{A} = W_r^TAV_r, \hat{b}= W_r^Tb, \hat{c}^T = c^TV_r.

Although a rigorous convergence proof so far has only be given for symmetric state space systems [3], numerous experiments have shown that the algorithm often converges rapidly.


References

<references>

[1]

[2]


[3]

</ references>

  1. 1.0 1.1 L. Meier, D.G. Luenberger, "Approximation of linear constant systems", IEEE Transactions on Automatic Control, vol.12, no.5, pp.585-588 1967
  2. 2.0 2.1 2.2 S. Gugercin, A.C. Antoulas, C. Beattie "H2 Model Reduction for Large-Scale Linear Dynamical Systems", SIAM. J. Matrix Anal. & Appl., vol.30, no.2, pp.609-638 2008
  3. 3.0 3.1 G. Flagg, C. Beattie, S. Gugercin "Convergence of the Iterative Rational Krylov Algorithm", Systems & Control Letters, vol.61, no.6, pp.688-691 2012