Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "DPA"

(Created page with "Category:Software Category:Linear algebra Category:sparse [https://sites.google.com/site/rommes/software DPA] stands for the '''D'''ominant '''P'''ole '''A'''lgor...")
 
Line 3: Line 3:
 
[[Category:sparse]]
 
[[Category:sparse]]
   
[https://sites.google.com/site/rommes/software DPA] stands for the '''D'''ominant '''P'''ole '''A'''lgorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out [[Modal truncation]].
+
[https://sites.google.com/site/rommes/software '''DPA'''] stands for the '''D'''ominant '''P'''ole '''A'''lgorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out [[Modal truncation]].
   
The following implemenations are available at [https://sites.google.com/site/rommes/software Joost Rommes'] homepage.
+
The following implementations are available at [https://sites.google.com/site/rommes/software Joost Rommes'] homepage.
   
* Subspace Accelerated Dominant Pole Algorithm (SADPA) for first order SISO systems <ref name="RomM06a"></ref><ref name="Rom07"></ref> ,
+
* '''S'''ubspace '''A'''ccelerated '''D'''ominant '''P'''ole '''A'''lgorithm ('''SADPA''') for first order SISO systems <ref name="RomM06a"></ref><ref name="Rom07"></ref> ,
* Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP) for first order MIMO systems <ref name="RomM06b"></ref><ref name="Rom07"></ref>,
+
* '''S'''ubspace '''A'''ccelerated '''M'''IMO '''D'''ominant '''P'''ole Algorithm ('''SAMDP''') for first order MIMO systems <ref name="RomM06b"></ref><ref name="Rom07"></ref>,
* Subspace Accelerated Quadratic Dominant Pole Algorithm (SAQDPA) for second order SISO systems <ref name="RomM08"></ref><ref name="Rom07"></ref>,
+
* '''S'''ubspace '''A'''ccelerated '''Q'''uadratic '''D'''ominant '''P'''ole '''A'''lgorithm ('''SAQDPA''') for second order SISO systems <ref name="RomM08"></ref><ref name="Rom07"></ref>,
 
==References==
 
==References==
 
<references>
 
<references>

Revision as of 13:18, 29 April 2013


DPA stands for the Dominant Pole Algorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out Modal truncation.

The following implementations are available at Joost Rommes' homepage.

  • Subspace Accelerated Dominant Pole Algorithm (SADPA) for first order SISO systems [1][2] ,
  • Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP) for first order MIMO systems [3][2],
  • Subspace Accelerated Quadratic Dominant Pole Algorithm (SAQDPA) for second order SISO systems [4][2],

References

<references> [1]

[3]

[2]

[4]

</ references>

Contact

Patrick Kürschner Joost Rommesr

  1. 1.0 1.1 J. Rommes and N. Martins, "Efficient computation of transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.3, pp.1218-1226, 2006
  2. 2.0 2.1 2.2 2.3 J. Rommes, "Methods for eigenvalue problems with applications in model order reduction", Ph.D. dissertation, Universiteit Utrecht, 2007.
  3. 3.0 3.1 J. Rommes and N. Martins, "Efficient computation of multivariable transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.4, pp.1471-1483, 2006
  4. 4.0 4.1 J. Rommes and N. Martins, "Computing transfer function dominant poles of large-scale second-order dynamical systems” SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.