Line 9: | Line 9: | ||
− | <math> H(s) = \sum_{i=1}^{n}\frac{r_i}{s-p_i} = \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} ,</math> |
+ | :<math> H(s) = \sum_{i=1}^{n}\frac{r_i}{s-p_i} = \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} ,</math> |
Line 15: | Line 15: | ||
− | <math>\varepsilon \widehat{A}_\varepsilon + \widehat{A}_0 = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] ,</math> |
+ | :<math>\varepsilon \widehat{A}_\varepsilon + \widehat{A}_0 = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] ,</math> |
− | <math>\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.</math> |
+ | :<math>\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.</math> |
Line 32: | Line 32: | ||
− | <math> A_\varepsilon = T\widehat{A}_\varepsilon T^*, \quad A_0 = T\widehat{A}_0 T^*, \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,</math> |
+ | :<math> A_\varepsilon = T\widehat{A}_\varepsilon T^*, \quad A_0 = T\widehat{A}_0 T^*, \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,</math> |
Revision as of 17:08, 28 November 2011
Introduction
On this page you will find a purely synthetic parametric model. The goal is to have a simple parametric model which one can use to experiment with different system orders, parameter values etc.
System description
The parameter scales the real part of the system poles, that is,
.
For a system in pole-residue form
we can then write down the state-space realisation with
Notice that the system matrices have complex entries.
For simplicity, assume that is even,
, and that all system poles are complex and ordered in complex conjugate pairs, i.e.
which, for real systems, also implies that the residues form complex conjugate pairs
Then a realization with matrices having real entries is given by
with
and
.
Numerical values
The numerical values for the different variables are
equally spaced in
, with
and
.
equally spaced in
,
equally spaced in
,
.
In MATLAB this is easily done as follows
test