Line 27: | Line 27: | ||
<math> p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k, </math> |
<math> p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k, </math> |
||
− | which also implies that the residues form complex conjugate pairs <math>r_1, \bar{r}_1,\ldots , r_k, \bar{r}_k.</math> |
+ | which, for real systems, also implies that the residues form complex conjugate pairs <math>r_1, \bar{r}_1,\ldots , r_k, \bar{r}_k.</math> |
Then a realization with matrices having real entries is given by |
Then a realization with matrices having real entries is given by |
Revision as of 15:48, 28 November 2011
Introduction
On this page you will find a purely synthetic parametric model. The goal is to have a simple parametric model which one can use to experiment with different system orders, parameter values etc.
System description
The parameter scales the real part of the system poles, that is,
.
For a system in pole-residue form
we can then write down the state-space realisation with
Notice that the system matrices have complex entries.
For simplicity, assume that is even,
, and that all system poles are complex and ordered in complex conjugate pairs, i.e.
which, for real systems, also implies that the residues form complex conjugate pairs
Then a realization with matrices having real entries is given by
with ,
for
.
Numerical values
The numerical values for the different variables are
equally spaced in
, with
and
.
equally spaced in
,
equally spaced in
,
.
In MATLAB this is easily done as follows
test