Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Moment-matching method"

m
 
(47 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
[[Category:method]]
 
[[Category:method]]
  +
[[Category:Differential_algebraic_system]]
The moment-matching methods are also called the Krylov subspace methods, as well as
 
  +
[[Category:linear]]
Pad<math>\'e</math> approximation methods. These methods are applicable for non-parametric linear time invariant systems, often the descriptor systems, e.g.
 
  +
[[Category:first differential order]]
<math>Insert formula here</math>
 
  +
[[Category:linear algebra]]
   
   
  +
==Description==
  +
The moment-matching methods are also called the ''Krylov'' subspace methods<ref name="freund03"/>, as well as
  +
''Padé'' approximation methods<ref name="feldmann95"/>. They belong to the [[Projection based MOR]] methods. These methods are applicable to non-parametric linear time invariant systems, often descriptor systems, e.g.
   
  +
:<math>E \dot{x}(t)=A x(t)+B u(t),</math>
They are very efficient in many engineering applications, including circuit simulation, where the robustness of the methods were originally found.
 
  +
:<math>y(t)=Cx(t).</math>
   
  +
They are very efficient in many engineering applications, such as circuit simulation, Microelectromechanical systems (MEMS) simulation, etc..
The basic steps are as follows. First, the transfer function~(\ref{eq:TFM}) is expanded into a power series at an expansion point $s_0\in\mathbb{C}\cup \infty$.
 
  +
%
 
  +
The basic steps are as follows. First, the transfer function
%
 
  +
Let $s=s_0+\sigma$, then, within the convergence radius of the series, we have
 
  +
:<math>H(s)=Y(s)/U(s)=C(sE-A)^{-1}B</math>
\[
 
  +
\begin{array}{lll}
 
  +
is expanded into a power series at an expansion point <math>s_0\in\mathbb{C}\cup \infty</math>.
&&H(s_0 + \sigma)= L^T[(s_{0}+\sigma){I}-A]^{-1}B \\
 
  +
&&=L^T[\sigma { I}+(s_{0}{ I}-{ A})]^{-1}B\\
 
  +
Let <math>s=s_0+\sigma</math>, then, within the convergence radius of the series, we have
&&=L^T[{ I}-\sigma(s_0{ I}-{ A})^{-1}]^{-1}[-(s_0{ I}-{ A})]^{-1}B\\
 
  +
&&=L^T[{ I}+\sigma(s_0{ I}- A )^{-1}+\sigma^2[(s_0{ I}-{ A})^{-1}]^{2}+\ldots]\times\\
 
  +
:<math>H(s_0 + \sigma)= C[(s_{0}+\sigma){E}-A]^{-1}B</math>
&&\quad({ A}-s_0{I})^{-1}B\\
 
  +
&&=\sum \limits^\infty_{i=0}\underbrace{L^T[(s_0{ I}-{A})^{-1}]^i({ A}-s_0{ I})^{-1}B}_{:= m_i(s_0)} \, \sigma^i,
 
  +
::<math>=C[\sigma { E}+(s_{0}{ E}-{ A})]^{-1}B</math>
\end{array}
 
  +
\]
 
  +
::<math>=C[{ I}+\sigma(s_0{ E}-{ A})^{-1}E]^{-1}(s_0{ E}-{ A})^{-1}B</math>
%
 
  +
%
 
  +
::<math>=C[{ I}-\sigma(s_0{ E}- A )^{-1}E+\sigma^2[(s_0{ E}-{ A})^{-1}E]^{2}+\ldots]
where $m_i(s_0)$ are called the moments of the transfer function about $s_0$ for $i=0,1,2,\ldots$.
 
  +
(s_0{E}-{ A})^{-1}B</math>
If the expansion point is chosen as zero then the moments simplify to $m_i(0)=L^\mathrm{T}(-A^{-1})^{i+1}B$.
 
  +
For $s_0=\infty$ the moments are also called Markov parameters which can be computed by $L^\mathrm{T} \bA^{i-1}B$.
 
  +
::<math>=\sum \limits^\infty_{i=0}\underbrace{C[-(s_0{ E}-{A})^{-1}E]^i(s_0{ E}-{ A})^{-1}B}_{:= m_i(s_0)} \, \sigma^i,</math>
  +
  +
where <math>m_i(s_0)</math> are called the moments of the transfer function about <math>s_0</math> for <math>i=0,1,2,\ldots</math>.
  +
If the expansion point is chosen as zero, then the moments simplify to <math>m_i(0)=C(A^{-1}E)^i(-A^{-1}B)</math>.
   
 
The goal in moment-matching model reduction is the construction of a reduced order
 
The goal in moment-matching model reduction is the construction of a reduced order
system where some moments $\hat m_i$ of the associated transfer function $\hat H$ match some moments
+
system where some moments <math>\hat m_i</math> of the associated transfer function <math>\hat H</math> match some moments
of the original transfer function $H$.
+
of the original transfer function <math>H</math>.
  +
A few important classes of approximations are listed in Table~\ref{tab:moments}.
 
  +
The matrices <math>V</math> and <math>W</math> for model order reduction can be computed
%
 
  +
from the vectors which are associated with the moments, for
%
 
  +
example, using a single expansion point <math>s_0=0</math>, by
\begin{center}
 
  +
\begin{table*}[ht]
 
  +
:<math>\textrm{range}(V)=\textrm{span}\{\tilde B,({ A}^{-1}E)^2 \tilde B, \ldots,({ A}^{-1}E)^{r}{\tilde B}\}, \quad \quad \quad \quad \quad \quad \quad \quad\quad \quad \quad \ (1) </math>
\hfill{}
 
  +
\begin{tabular}{l|ll}
 
  +
:<math>\textrm{range}(W)=\textrm{span}\{C^T, E^T{ A}^{-T}C^T,(E^T{A}^{-T})^2C^T, \ldots
%\hline
 
  +
,(E^T{A}^{-T})^{r-1}C^T\}, \quad \quad (2) </math>
Name of reduced order system& Matched moments &\\\hline
 
  +
%\cline{3-4}
 
  +
where <math>\tilde B=-A^{-1}B</math>.
%\hline
 
  +
Pad\'e approximation~\cite{Bak75} & $m_i(s_0) = \hat m_i(s_0)$, & $i=0,1,\cdots,2r-1$ \\
 
  +
The transfer function <math>\hat H</math> of the reduced model has good approximation properties around <math>s_0</math>, which matches the first <math>2r</math> moments of <math>H(s)</math> at <math>s_0</math>.
Partial realization~\cite{GraL83} & $m_i(\infty) = \hat m_i(\infty)$, & $i=0,1,\cdots,2r-1$ \\
 
  +
Multipoint Pad\'e approximation or & $m_i(s_j) = \hat m_i(s_j)$, & $i=0,1,\cdots,2r_j-1$, for $j=1,\cdots,k$, and $r_1+\dots+r_k = r$ \\
 
  +
Using a set of <math>k</math> distinct expansion points <math>\{s_1,\cdots,s_k\}</math>, the reduced model obtained by, e.g.,
rational interpolation~\cite{AndA90,Bak75} & &
 
  +
%\hline
 
  +
\end{tabular}
 
  +
:<math>\textrm{range}(V)=\textrm{span}\{(A-s_1 {E})^{-1}E\tilde B,\ldots,(A-s_k {E})^{-1}E\tilde B \}, \quad \quad \quad \quad \quad \quad \quad \quad (3)</math>
\hfill{}
 
  +
\caption{Some examples for model reduction by moment-matching.}
 
  +
:<math>\textrm{range}(W)=\textrm{span}\{E^T(A-s_1 {E})^{-T}C^T,\ldots,E^T(A-s_k {E})^{-T}C^T \},\quad \quad \quad \quad \quad (4) </math>
\label{tab:moments}
 
  +
\end{table*}
 
  +
matches the first two moments at each <math>s_j</math>, <math>j=1,\ldots,k</math>, see <ref name="grimme97"/>. The reduced model is in the form as below
\end{center}
 
  +
  +
:<math>W^TE \frac{d{V z}}{t}=W^TA Vz +W^T B u(t), \quad \hat{y}(t)=CVz.</math>
  +
  +
For the case of one expansion point in (1)(2), it can be seen that the columns of <math>V</math>, <math>W</math> span Krylov subspaces
  +
which can easily be computed by Arnoldi or Lanczos methods. The matrices <math>V</math> and <math>W</math> in (3)(4) can be computed with the rational Krylov algorithm in<ref name="grimme97"/> or with the modified Gram-Schmidt process. In these algorithms only a few number of linear systems need to be solved, where matrix-vector multiplications are only used if using iterative solvers, which are simple to implement and the complexity of the resulting
  +
methods is roughly <math>O(n r^2)</math> for sparse matrices <math>A, E</math>.
  +
  +
==References==
  +
  +
<references>
  +
  +
<ref name="freund03">R.W. Freund, "<span class="plainlinks">[http://dx.doi.org/10.1017/S0962492902000120 Model reduction methods based on Krylov subspaces]</span>". Acta Numerica, 12:267-319, 2003.</ref>
  +
  +
<ref name="feldmann95">P. Feldmann and R.W. Freund, "<span class="plainlinks">[http://dx.doi.org/10.1109/43.384428 Efficient linear circuit analysis by Pade approximation via the Lanczos process]</span>". IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 14:639-649, 1995.</ref>
  +
  +
<ref name="grimme97">E.J. Grimme, "<span class="plainlinks">[http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.9254&rep=rep1&type=pdf Krylov projection methods for model reduction]</span>. PhD thesis, Univ. Illinois, Urbana-Champaign, 1997.</ref>
  +
  +
</references>

Latest revision as of 14:55, 25 August 2022


Description

The moment-matching methods are also called the Krylov subspace methods[1], as well as Padé approximation methods[2]. They belong to the Projection based MOR methods. These methods are applicable to non-parametric linear time invariant systems, often descriptor systems, e.g.

E \dot{x}(t)=A x(t)+B u(t),
y(t)=Cx(t).

They are very efficient in many engineering applications, such as circuit simulation, Microelectromechanical systems (MEMS) simulation, etc..

The basic steps are as follows. First, the transfer function

H(s)=Y(s)/U(s)=C(sE-A)^{-1}B

is expanded into a power series at an expansion point s_0\in\mathbb{C}\cup \infty.

Let s=s_0+\sigma, then, within the convergence radius of the series, we have

H(s_0 + \sigma)= C[(s_{0}+\sigma){E}-A]^{-1}B
=C[\sigma { E}+(s_{0}{ E}-{ A})]^{-1}B
=C[{ I}+\sigma(s_0{ E}-{ A})^{-1}E]^{-1}(s_0{ E}-{ A})^{-1}B
=C[{ I}-\sigma(s_0{ E}- A )^{-1}E+\sigma^2[(s_0{ E}-{ A})^{-1}E]^{2}+\ldots]
(s_0{E}-{ A})^{-1}B
=\sum \limits^\infty_{i=0}\underbrace{C[-(s_0{ E}-{A})^{-1}E]^i(s_0{ E}-{ A})^{-1}B}_{:= m_i(s_0)} \, \sigma^i,

where m_i(s_0) are called the moments of the transfer function about s_0 for i=0,1,2,\ldots. If the expansion point is chosen as zero, then the moments simplify to m_i(0)=C(A^{-1}E)^i(-A^{-1}B).

The goal in moment-matching model reduction is the construction of a reduced order system where some moments \hat m_i of the associated transfer function \hat H match some moments of the original transfer function H.

The matrices V and W for model order reduction can be computed from the vectors which are associated with the moments, for example, using a single expansion point s_0=0, by

\textrm{range}(V)=\textrm{span}\{\tilde B,({ A}^{-1}E)^2 \tilde B, \ldots,({ A}^{-1}E)^{r}{\tilde B}\},  \quad \quad \quad \quad \quad \quad \quad \quad\quad \quad \quad \  (1)
\textrm{range}(W)=\textrm{span}\{C^T, E^T{ A}^{-T}C^T,(E^T{A}^{-T})^2C^T, \ldots
,(E^T{A}^{-T})^{r-1}C^T\}, \quad \quad (2)

where \tilde B=-A^{-1}B.

The transfer function \hat H of the reduced model has good approximation properties around s_0, which matches the first 2r moments of H(s) at s_0.

Using a set of k distinct expansion points \{s_1,\cdots,s_k\}, the reduced model obtained by, e.g.,


\textrm{range}(V)=\textrm{span}\{(A-s_1 {E})^{-1}E\tilde B,\ldots,(A-s_k {E})^{-1}E\tilde B   \},  \quad \quad \quad \quad \quad \quad \quad \quad (3)
\textrm{range}(W)=\textrm{span}\{E^T(A-s_1 {E})^{-T}C^T,\ldots,E^T(A-s_k {E})^{-T}C^T \},\quad \quad \quad \quad \quad (4)

matches the first two moments at each s_j, j=1,\ldots,k, see [3]. The reduced model is in the form as below

W^TE \frac{d{V z}}{t}=W^TA Vz +W^T B u(t), \quad \hat{y}(t)=CVz.

For the case of one expansion point in (1)(2), it can be seen that the columns of V, W span Krylov subspaces which can easily be computed by Arnoldi or Lanczos methods. The matrices V and W in (3)(4) can be computed with the rational Krylov algorithm in[3] or with the modified Gram-Schmidt process. In these algorithms only a few number of linear systems need to be solved, where matrix-vector multiplications are only used if using iterative solvers, which are simple to implement and the complexity of the resulting methods is roughly O(n r^2) for sparse matrices A, E.

References

  1. R.W. Freund, "Model reduction methods based on Krylov subspaces". Acta Numerica, 12:267-319, 2003.
  2. P. Feldmann and R.W. Freund, "Efficient linear circuit analysis by Pade approximation via the Lanczos process". IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 14:639-649, 1995.
  3. 3.0 3.1 E.J. Grimme, "Krylov projection methods for model reduction. PhD thesis, Univ. Illinois, Urbana-Champaign, 1997.