Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Branchline Coupler"

(Fixes, extraction, system structure and dimensions)
 
(28 intermediate revisions by 7 users not shown)
Line 1: Line 1:
  +
{{preliminary}} <!-- Do not remove -->
  +
 
[[Category:benchmark]]
 
[[Category:benchmark]]
[[Category:parametric system]]
+
[[Category:Parametric]]
[[Category:linear system]]
+
[[Category:linear]]
 
[[Category:time invariant]]
 
[[Category:time invariant]]
[[Category:physical parameters]]
+
[[Category:second differential order]]
[[Category:two parameters]]
 
[[Category:second order system]]
 
   
   
==Model Description==
+
==Description==
   
A branchline coupler is a microwave semiconductor device, which is simulated by the time-harmonic maxwell's equations.
+
A '''branchline coupler''' (see Fig.&nbsp;1) is a microwave semiconductor device, which is simulated by the [http://www.maxwells-equations.com/forms.php#harmonic time-harmonic Maxwell's equation].
A 2-section branchline coupler consists of four strip line ports, coupled by two transversal bridges with each other.
+
A 2-section '''branchline coupler''' consists of four strip line ports, coupled to each other by two transversal bridges.
 
The energy excited at one port is coupled almost in equal shares to the two opposite ports, when considered as a MIMO-system.
 
The energy excited at one port is coupled almost in equal shares to the two opposite ports, when considered as a MIMO-system.
 
Here, only the SISO case is considered.
 
Here, only the SISO case is considered.
The branchline coupler with 0.05 mm thickness are placed on a substrate with 0.749 mm thickness and relative permittivity
+
The '''branchline coupler''' with <math>0.05 \, \text{mm}</math> thickness is placed on a substrate with <math>0.749 \, \text{mm}</math> thickness and relative permittivity
<math> \epsilon_r = 2.2 </math> and zero-conductivity <math> \sigma = 0 S/m </math>.
+
<math> \epsilon_r = 2.2 </math> and zero-conductivity <math> \sigma = 0 \, \text{S/m} </math>.
The simulation domain is confined to a <math> 23.6 \times 22 \times 7 mm^3 </math> box.
+
The simulation domain is confined to a <math> 23.6 \times 22 \times 7 \, \text{mm}^3 </math> box.
 
The metallic ground plane of the device is represented by the electric boundary condition. The magnetic boundary
 
The metallic ground plane of the device is represented by the electric boundary condition. The magnetic boundary
condition is considered for the other sides of the structures. The discrete input port with source impedance 50 ohm
+
condition is considered for the other sides of the structures. The discrete input port with source impedance <math>50 \, \Omega</math>
imposes 1 A current as the input. The voltage along the coupled port at the end of the other side of the coupler is
+
imposes <math>1 \, \text{A}</math> current as the input. The voltage along the coupled port at the end of the other side of the coupler is
 
read as the output.
 
read as the output.
   
  +
<figure id="fig:branch">
[[File:BranchlineCoupler.png]]
 
  +
[[File:BranchlineCoupler.png|frame|<caption>Branchline Coupler Model<ref name="hess13"/></caption>]]
  +
</figure>
   
 
Considered parameters are the frequency <math>\omega </math> and the relative permeability <math> \mu_r </math> .
   
  +
The affine form <math> a(u, v; \omega, \mu_r) = \sum_{q=1}^Q \Theta^q(\omega, \mu_r) a^q(u, v) </math> can be established using <math> Q = 2 </math> affine terms.
   
  +
The discretized bilinear form is <math> a(u, v; \omega, \mu_r) = \sum_{q=1}^Q \Theta^q(\omega, \mu_r) A^q </math>, with matrices <math> A^q </math>.
==Matrices and Data==
 
   
  +
The matrices corresponding to the bilinear forms <math> a^q( \cdot , \cdot ) </math> as well as the input and output forms and the H(curl) inner product matrix have been assembled
 
using the [[wikipedia:Finite_Element_Method|Finite Element Method]], resulting in <math>27679</math> degrees of freedom, after removal of boundary conditions.
   
 
The coefficient functions are given by:
Considered parameters are the frequency <math> \omega </math> and the relative permeability <math> \mu_r </math> .
 
   
The affine form <math> a(u, v; \omega, \mu_r) = \sum_{q=1}^Q \Theta^q(\omega, \mu_r) a^q(u, v) </math> can be established using <math> Q = 2 </math> affine terms.
+
:<math> \Theta^1(\omega, \mu_r) = \frac{1}{\mu_r} </math>
   
The discretized bilinear form is <math> a(u, v; \omega, \mu_r) = \sum_{q=1}^Q \Theta^q(\omega, \mu_r) A^q </math>, with matrices <math> A^q </math>.
+
:<math> \Theta^2(\omega, \mu_r) = -\omega^2. </math>
   
The matrices corresponding to the bilinear forms <math> a^q( \cdot , \cdot ) </math> as well as the input and output forms and H(curl) inner product matrix have been assembled
+
The parameter domain of interest is <math> \omega \in [1, 10] \cdot 10^9 \, \text{Hz}</math>, where the factor of <math> 10^9 </math> has already been taken into account
 
while assembling the matrices, while the material variation occurs between <math> \mu_r \in [0.5, 2.0] </math>. The input functional also has a factor of <math> \omega </math>.
using the Finite Element Method, resulting in 27'679 degrees of freedom, after removal of boundary conditions. The files are numbered according to their
 
appearance in the summation.
 
   
  +
==Origin==
[[File:Matrices_BranchlineCoupler.tar.gz]]
 
   
 
The models have been developed within the [http://www.moresim4nano.org MoreSim4Nano project].
The coefficient functions are given by
 
   
  +
==Data==
<math> \Theta^1(\omega, \nu) = \frac{1}{\mu_r} </math>
 
   
  +
The files are numbered according to their appearance in the summation and can be found here:
<math> \Theta^2(\omega, \nu) = -\omega^2 </math>
 
   
  +
* [[Media:branchline_part1.zip|branchline_part1.zip]]
The parameter domain of interest is <math> \omega \in [1.0, 10.0] * 10^9 </math> Hz, where the factor of <math> 10^9 </math> has already been taken into account
 
  +
* [[Media:branchline_part2.zip|branchline_part2.zip]]
while assembling the matrices, while the material variation occurs between <math> \mu_r \in [0.5, 2.0] </math>. The input functional also has a factor of <math> \omega </math>.
 
  +
* [[Media:branchline_part3.zip|branchline_part3.zip]]
   
  +
Unzipping these files individually will extract:
[[File:Matrices_BranchlineCoupler.tar.gz]]
 
   
  +
* <tt>branchline_coupler_MORwiki_matrices.7z.001</tt>
  +
* <tt>branchline_coupler_MORwiki_matrices.7z.002</tt>
  +
* <tt>branchline_coupler_MORwiki_matrices.7z.003</tt>
   
  +
Extracting those will then give:
==References==
 
   
  +
* <tt>BranchlineCoupler_A1.mtx</tt>
  +
* <tt>BranchlineCoupler_A2.mtx</tt>
  +
* <tt>BranchlineCoupler_Input.mtx</tt>
  +
* <tt>BranchlineCoupler_Output.mtx</tt>
  +
* <tt>BranchlineCoupler_L2.mtx</tt>
  +
* <tt>BranchlineCoupler_Hcurl.mtx</tt>
   
  +
==Dimensions==
   
  +
System structure:
The models have been developed within the MoreSim4Nano project.
 
  +
  +
:<math>
  +
\begin{align}
  +
(\Theta_1(\omega, \mu_r) A_1 + \Theta_2(\omega, \mu_r) A_2) x(\omega, \mu_r) & = b \\
  +
y(\omega, \mu_r) & = c^T x(\omega, \mu_r)
  +
\end{align}
  +
</math>
  +
  +
System dimensions:
  +
  +
<math>A_1, A_2 \in \mathbb{R}^{27679 \times 27679}</math>,
  +
<math>b, c \in \mathbb{R}^{27679 \times 1}</math>.
  +
  +
==Citation==
  +
  +
To cite this benchmark, use the following references:
  +
  +
* For the benchmark itself and its data:
  +
::The MORwiki Community, '''Branchline Coupler'''. MORwiki - Model Order Reduction Wiki, 2018. http://modelreduction.org/index.php/Branchline_Coupler
  +
  +
@MISC{morwiki_branchcouple,
  +
author = <nowiki>{{The MORwiki Community}}</nowiki>,
  +
title = {Branchline Coupler},
  +
howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  +
url = <nowiki>{http://modelreduction.org/index.php/Branchline_Coupler}</nowiki>,
  +
year = {2013}
  +
}
  +
  +
* For the background on the benchmark:
  +
  +
@ARTICLE{morHesB13,
  +
author = {M.~W. Hess and P. Benner},
  +
title = {Fast Evaluation of Time-Harmonic {M}axwell's Equations Using the Reduced Basis Method},
  +
journal = {{IEEE} Trans. Microw. Theory Techn.},
  +
year = 2013,
  +
volume = 61,
  +
number = 6,
  +
pages = {2265--2274},
  +
doi = {10.1109/TMTT.2013.2258167}
  +
}
  +
  +
 
==References==
   
  +
<references>
[1] www.moresim4nano.org
 
   
[2] M. W. Hess, P. Benner, Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method, MPI preprint
+
<ref name="hess13">M. W. Hess, P. Benner, "<span class="plainlinks">[https://doi.org/10.1109/TMTT.2013.2258167 Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method]</span>", IEEE Transactions on Microwave Theory and Techniques, 61(6): 2265--2274, 2013.</ref>
http://www.mpi-magdeburg.mpg.de/preprints/2012/MPIMD12-17.pdf
 
   
  +
</references>
   
Contact information:
+
==Contact==
   
 
'' [[User:hessm|Martin Hess]]''
 
'' [[User:hessm|Martin Hess]]''

Latest revision as of 16:48, 29 August 2023

Under Construction.png Note: This page has not been verified by our editors.


Description

A branchline coupler (see Fig. 1) is a microwave semiconductor device, which is simulated by the time-harmonic Maxwell's equation. A 2-section branchline coupler consists of four strip line ports, coupled to each other by two transversal bridges. The energy excited at one port is coupled almost in equal shares to the two opposite ports, when considered as a MIMO-system. Here, only the SISO case is considered. The branchline coupler with 0.05 \, \text{mm} thickness is placed on a substrate with 0.749 \, \text{mm} thickness and relative permittivity  \epsilon_r = 2.2 and zero-conductivity  \sigma = 0 \, \text{S/m} . The simulation domain is confined to a  23.6 \times 22 \times 7 \, \text{mm}^3 box. The metallic ground plane of the device is represented by the electric boundary condition. The magnetic boundary condition is considered for the other sides of the structures. The discrete input port with source impedance 50 \, \Omega imposes 1 \, \text{A} current as the input. The voltage along the coupled port at the end of the other side of the coupler is read as the output.

Figure 1: Branchline Coupler Model[1]

Considered parameters are the frequency \omega and the relative permeability  \mu_r .

The affine form  a(u, v; \omega, \mu_r) = \sum_{q=1}^Q \Theta^q(\omega, \mu_r) a^q(u, v) can be established using  Q = 2 affine terms.

The discretized bilinear form is  a(u, v; \omega, \mu_r) = \sum_{q=1}^Q \Theta^q(\omega, \mu_r) A^q , with matrices  A^q .

The matrices corresponding to the bilinear forms  a^q( \cdot , \cdot ) as well as the input and output forms and the H(curl) inner product matrix have been assembled using the Finite Element Method, resulting in 27679 degrees of freedom, after removal of boundary conditions.

The coefficient functions are given by:

 \Theta^1(\omega, \mu_r) = \frac{1}{\mu_r}
 \Theta^2(\omega, \mu_r) = -\omega^2.

The parameter domain of interest is  \omega \in [1, 10] \cdot 10^9 \, \text{Hz}, where the factor of  10^9 has already been taken into account while assembling the matrices, while the material variation occurs between  \mu_r \in [0.5, 2.0] . The input functional also has a factor of  \omega .

Origin

The models have been developed within the MoreSim4Nano project.

Data

The files are numbered according to their appearance in the summation and can be found here:

Unzipping these files individually will extract:

  • branchline_coupler_MORwiki_matrices.7z.001
  • branchline_coupler_MORwiki_matrices.7z.002
  • branchline_coupler_MORwiki_matrices.7z.003

Extracting those will then give:

  • BranchlineCoupler_A1.mtx
  • BranchlineCoupler_A2.mtx
  • BranchlineCoupler_Input.mtx
  • BranchlineCoupler_Output.mtx
  • BranchlineCoupler_L2.mtx
  • BranchlineCoupler_Hcurl.mtx

Dimensions

System structure:


\begin{align}
  (\Theta_1(\omega, \mu_r) A_1 + \Theta_2(\omega, \mu_r) A_2) x(\omega, \mu_r) & = b \\
  y(\omega, \mu_r) & = c^T x(\omega, \mu_r)
\end{align}

System dimensions:

A_1, A_2 \in \mathbb{R}^{27679 \times 27679}, b, c \in \mathbb{R}^{27679 \times 1}.

Citation

To cite this benchmark, use the following references:

  • For the benchmark itself and its data:
The MORwiki Community, Branchline Coupler. MORwiki - Model Order Reduction Wiki, 2018. http://modelreduction.org/index.php/Branchline_Coupler
@MISC{morwiki_branchcouple,
  author =       {{The MORwiki Community}},
  title =        {Branchline Coupler},
  howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  url =          {http://modelreduction.org/index.php/Branchline_Coupler},
  year =         {2013}
}
  • For the background on the benchmark:
@ARTICLE{morHesB13,
  author        = {M.~W. Hess and P. Benner},
  title         = {Fast Evaluation of Time-Harmonic {M}axwell's Equations Using the Reduced Basis Method},
  journal       = {{IEEE} Trans. Microw. Theory Techn.},
  year          = 2013,
  volume        = 61,
  number        = 6,
  pages         = {2265--2274},
  doi           = {10.1109/TMTT.2013.2258167}
}


References

  1. M. W. Hess, P. Benner, "Fast Evaluation of Time-Harmonic Maxwell's Equations Using the Reduced Basis Method", IEEE Transactions on Microwave Theory and Techniques, 61(6): 2265--2274, 2013.

Contact

Martin Hess