Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Thermal Block"

 
(10 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{preliminary}} <!-- Do not remove -->
 
 
 
[[Category:benchmark]]
 
[[Category:benchmark]]
 
[[Category:parametric]]
 
[[Category:parametric]]
Line 7: Line 5:
 
[[Category:first differential order]]
 
[[Category:first differential order]]
 
[[Category:time invariant]]
 
[[Category:time invariant]]
[[Category:parametric 2-5 parameters]]
 
 
[[Category:MIMO]]
 
[[Category:MIMO]]
 
[[Category:Sparse]]
 
[[Category:Sparse]]
  +
  +
{{Infobox
  +
|Title = Thermal Block
  +
|Benchmark ID = thermalBlock_n7488m1q4
  +
|Category = misc
  +
|System-Class = AP-LTI-FOS
  +
|nstates = 7488
  +
|ninputs = 1
  +
|noutputs = 4
  +
|nparameters = 4
  +
|components = A, B, C, E
  +
|License = BSD 2-Clause "Simplified" License
  +
|Creator = [[User:Saak]]
  +
|Editor =
  +
* [[User:Saak]]
  +
* [[User:Himpe]]
  +
* [[User:Mlinaric]]
  +
|Zenodo-link = https://zenodo.org/record/3691894/files/ABCE.mat
  +
}}
   
   
 
==Description==
 
==Description==
A parametric semi-discretized heat transfer problem with varying heat transfer coefficients, the parameters, on subdomains. This model is also called ''cookie baking problem'', and can be viewed as a flattened 2-D version of the ''skyscraper problem'' from high performance computing.
+
A parametric semi-discretized heat transfer problem with varying heat transfer coefficients, the parameters, on subdomains. This model is also called the ''cookie baking problem'', and can be viewed as a flattened 2-D version of the ''skyscraper problem'' from high-performance computing.
   
 
<figure id="fig1">[[File:ThermalBlockDomain.svg|490px|thumb|right|<caption>The computational domain and boundaries.</caption>]]</figure>
 
<figure id="fig1">[[File:ThermalBlockDomain.svg|490px|thumb|right|<caption>The computational domain and boundaries.</caption>]]</figure>
Line 48: Line 64:
   
 
==Data==
 
==Data==
The benchmark includes the basic domain description as a gmsh input file, Python scripts for the matrix assembly, simulation in pyMOR and visualization as VTK, together with the matrices both as one combined file <code>ABCE.mat</code> or separate matrix market files for all matrices. The sources and the <code>ABCE.mat</code> are available for download at [https://doi.org/10.5281/zenodo.3691894 Zenodo].
+
The benchmark includes the basic domain description as a gmsh input file, Python scripts for the matrix assembly, simulation in pyMOR, and visualization as VTK, together with the matrices both as one combined file <code>ABCE.mat</code> or separate matrix market files for all matrices. The sources and the <code>ABCE.mat</code> are available for download at [https://doi.org/10.5281/zenodo.3691894 Zenodo].
   
 
Note that the heat transfer coefficients are designed as characteristic functions on the domains, such that the system is only well-posed when all entries in <math>\mu</math> are positive.
 
Note that the heat transfer coefficients are designed as characteristic functions on the domains, such that the system is only well-posed when all entries in <math>\mu</math> are positive.
Line 56: Line 72:
 
:<math>
 
:<math>
 
\begin{align}
 
\begin{align}
E\dot{x}(t) &= (A_0 + \mu_1 A_1 + \mu_2 A_2 + \mu_3 A_3 + \mu_4 A_4) x(t) + Bu(t), \\
+
E\dot{x}(t) &= (A_1 + \mu_1 A_2 + \mu_2 A_3 + \mu_3 A_4 + \mu_4 A_5) x(t) + Bu(t), \\
 
y(t) &= Cx(t)
 
y(t) &= Cx(t)
 
\end{align}
 
\end{align}
Line 65: Line 81:
   
 
<math>E \in \mathbb{R}^{N \times N}</math>,
 
<math>E \in \mathbb{R}^{N \times N}</math>,
<math>A_0 \in \mathbb{R}^{N \times N}</math>,
+
<math>A_{1,...,5} \in \mathbb{R}^{N \times N}</math>,
<math>A_1 \in \mathbb{R}^{N \times N}</math>,
 
<math>A_2 \in \mathbb{R}^{N \times N}</math>,
 
<math>A_3 \in \mathbb{R}^{N \times N}</math>,
 
<math>A_4 \in \mathbb{R}^{N \times N}</math>,
 
 
<math>B \in \mathbb{R}^{N \times 1}</math>,
 
<math>B \in \mathbb{R}^{N \times 1}</math>,
 
<math>C \in \mathbb{R}^{4 \times N}</math>,
 
<math>C \in \mathbb{R}^{4 \times N}</math>,
Line 88: Line 100:
   
 
* For the benchmark itself and its data:
 
* For the benchmark itself and its data:
:: S. Rave and J. Saak, '''Thermal Block'''. MORwiki - Model Order Reduction Wiki, 2020. http://modelreduction.org/index.php/Thermal_Block
+
:: S. Rave and J. Saak, '''Thermal Block'''. MORwiki - Model Order Reduction Wiki, 2020. https://modelreduction.org/morwiki/Thermal_Block
 
 
 
@MISC{morwiki_thermalblock,
 
@MISC{morwiki_thermalblock,
Line 94: Line 106:
 
title = {Thermal Block},
 
title = {Thermal Block},
 
howpublished = {{MORwiki} -- Model Order Reduction Wiki},
 
howpublished = {{MORwiki} -- Model Order Reduction Wiki},
url = <nowiki>{http://modelreduction.org/index.php/Thermal_Block}</nowiki>,
+
url = <nowiki>{https://modelreduction.org/morwiki/Thermal_Block}</nowiki>,
 
year = 2020
 
year = 2020
 
}
 
}
   
 
* For the background on the benchmark:
 
* For the background on the benchmark:
:: S. Rave and J. Saak, <span class="plainlinks">[https://arxiv.org/abs/2003.00846 '''An Instationary Thermal-Block Benchmark Model for Parametric Model Order Reduction''']. e-prints 2003.00846, arXiv, math.NA (2020).
+
:: S. Rave and J. Saak, <span class="plainlinks">[https://arxiv.org/abs/2003.00846 '''A Non-Stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction''']. e-prints 2003.00846, arXiv, math.NA (2020).
   
  +
@INPROCEEDINGS{morRavS21,
@TECHREPORT{morRavS20,
 
 
author = {Rave, S. and Saak, J.},
 
author = {Rave, S. and Saak, J.},
title = {An Instationary Thermal-Block Benchmark Model for Parametric
+
title = {A Non-Stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction},
  +
booktitle = {Model Reduction of Complex Dynamical Systems},
Model Order Reduction},
 
  +
series = {International Series of Numerical Mathematics},
institution = {arXiv},
 
type = {e-print},
+
volume = {171},
number = {2003.00846},
+
publisher = {Springer},
note = {math.NA},
+
year = 2021,
year = 2020,
+
doi = {10.1007/978-3-030-72983-7_16}
url = <nowiki>{https://arxiv.org/abs/2003.00846}</nowiki>
 
 
}
 
}
   
 
==References==
 
==References==
 
<references>
 
<references>
<ref name="morBenW20c">P. Benner, S. W. R. Werner, <span class="plainlinks">[https://arxiv.org/abs/2002.12682 MORLAB -- the Model Order Reduction LABoratory]</span>,
+
<ref name="morBenW20c">P. Benner, S. W. R. Werner, <span class="plainlinks">[https://doi.org/10.1007/978-3-030-72983-7_19 MORLAB -- the Model Order Reduction LABoratory]</span>,
  +
Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 393--415, 2021.</ref>
e-print 2002.12682, arXiv, cs.MS (2020).</ref>
 
<ref name="morHim20">C. Himpe, <span class="plainlinks">[https://arxiv.org/abs/2002.12226 Comparing (empirical-Gramian-based) model order reduction algorithms]</span>, e-prints 2002.12226, arXiv, math.OC (2020).</ref>
+
<ref name="morHim20">C. Himpe, <span class="plainlinks">[https://doi.org/10.1007/978-3-030-72983-7_7 Comparing (empirical-Gramian-based) model order reduction algorithms]</span>,
  +
Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 141--164, 2021.</ref>
<ref name="morBenKS20">P. Benner, M. Köhler, J. Saak, <span class="plainlinks">[https://arxiv.org/abs/2003.02088 Matrix equations, sparse solvers: M-M.E.S.S.-2.0.1 – philosophy, features and application for (parametric) model order reduction]</span>, eprints 2003.02088, arXiv, cs.MS (2020).</ref>
 
<ref name="morRavS20">S. Rave, J. Saak, <span class="plainlinks">[https://arxiv.org/abs/2003.00846 An Instationary Thermal-Block Benchmark Model for Parametric Model Order Reduction]</span>, e-prints 2003.00846, arXiv, math.NA (2020).</ref>
+
<ref name="morBenKS20">P. Benner, M. Köhler, J. Saak, <span class="plainlinks">[https://doi.org/10.1007/978-3-030-72983-7_18 Matrix equations, sparse solvers: M-M.E.S.S.-2.0.1 philosophy, features and application for (parametric) model order reduction]</span>, Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 369--392, 2021.</ref>
<ref name="morMliRS20">P. Mlinarić, S. Rave, J. Saak, <span class="plainlinks">[https://arxiv.org/abs/2003.05825 Parametric model order reduction using pyMOR]</span>, e-prints 2003.05825, arXiv, cs.MS (2020).</ref>
+
<ref name="morRavS20">S. Rave, J. Saak, <span class="plainlinks">[https://doi.org/10.1007/978-3-030-72983-7_16 An Non-Stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction]</span>, Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 349-356, 2021.</ref>
  +
<ref name="morMliRS20">P. Mlinarić, S. Rave, J. Saak, <span class="plainlinks">[https://doi.org/10.1007/978-3-030-72983-7_17 Parametric model order reduction using pyMOR]</span>, Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 357--367 , 2021.</ref>
</references>
 
  +
</references>
   
 
==Contact==
 
==Contact==

Latest revision as of 07:41, 17 June 2025


Thermal Block
Background
Benchmark ID

thermalBlock_n7488m1q4

Category

misc

System-Class

AP-LTI-FOS

Parameters
nstates
7488
ninputs

1

noutputs

4

nparameters

4

components

A, B, C, E

Copyright
License

BSD 2-Clause "Simplified" License

Creator

Jens Saak

Editor
Location

https://zenodo.org/record/3691894/files/ABCE.mat


Description

A parametric semi-discretized heat transfer problem with varying heat transfer coefficients, the parameters, on subdomains. This model is also called the cookie baking problem, and can be viewed as a flattened 2-D version of the skyscraper problem from high-performance computing.

Figure 1: The computational domain and boundaries.
Figure 2: A sample heat distribution at time 1.0 for parameter choice [100, 0.01, 0.001, 0.0001].
Figure 3: Sigma magnitude plot of the single parameter variant.

Modeling

Consider a parameter \mu\in{[10^{-6},10^2]}^4\subset\mathbb{R}^{4} and define the heat conductivity \sigma(\xi; \mu) as 1.0 when \xi\in\Omega_0 and \sigma(\xi; \mu)=\mu_i when \xi\in\Omega_i. The heat distribution is governed by the equation:


 \partial_t \theta(t, \xi; \mu) + \nabla \cdot (- \sigma(\xi; \mu) \nabla \theta(t, \xi; \mu)) = 0,\text{ for } t\in (0,T), \text{ and } \xi \in \Omega,

with a heat-inflow condition on the left (Neumann boundary)


    \sigma(\xi; \mu) \nabla \theta(t, \xi; \mu) \cdot n(\xi) = u(t)\text{ for } t \in (0,T), \text{ and } \xi \in \Gamma_{in},

perfect isolation on the top and bottom (Neumann-zero boundary)


    \sigma(\xi; \mu) \nabla \theta(t, \xi; \mu) \cdot n(\xi) = 0\text{ for } t \in (0,T), \text{ and } \xi \in \Gamma_N,

and fixed temperature on the right (Dirichlet boundary)


    \theta(t, \xi; \mu) = 0\text{ for } t \in (0,T), \text{ and } \xi \in \Gamma_{D},

and initial condition


    \theta(0, \xi; \mu) = 0 \text{ for } \xi \in \Omega.

Discretization

For the discretization, FEniCS 2019.1 was used on a simplicial grid with first order elements. The mesh is generated from the domain specification using gmsh 3.0.6 with 'clscale' set to 0.1. The Python-based source code for the discretization can be found at Zenodo.

Origin

This benchmark was developed for the MODRED 2019 proceedings[1].

Data

The benchmark includes the basic domain description as a gmsh input file, Python scripts for the matrix assembly, simulation in pyMOR, and visualization as VTK, together with the matrices both as one combined file ABCE.mat or separate matrix market files for all matrices. The sources and the ABCE.mat are available for download at Zenodo.

Note that the heat transfer coefficients are designed as characteristic functions on the domains, such that the system is only well-posed when all entries in \mu are positive.

Dimensions

System structure:


\begin{align}
E\dot{x}(t) &= (A_1 + \mu_1 A_2 + \mu_2 A_3 + \mu_3 A_4 + \mu_4 A_5) x(t) + Bu(t), \\
y(t) &= Cx(t)
\end{align}


System dimensions:

E \in \mathbb{R}^{N \times N}, A_{1,...,5} \in \mathbb{R}^{N \times N}, B \in \mathbb{R}^{N \times 1}, C \in \mathbb{R}^{4 \times N},

where N=7\,488 for the system matrices given in ABCE.mat.

Variants

Besides the full four parameter setup, the model can be used in variations with other numbers of independent parameters. The following two are recommended in the original work and have been investigated in the literature[2],[3],[4],[5].

Single parameter

The interpretation of the thermal block as the "cookie baking" problem with slight variation in the dough leads to an easy one parameter variant. Here the new single parameter \hat\mu\in [ 10^{-6}, 10^2] is chosen such that  \mu = \hat\mu\left[0.2, 0.4, 0.6, 0.8\right].

Non-parametric

The system can be used as a standard LTI state-space model. It is suggested to use \mu = \sqrt{10} [0.2, 0.4, 0.6, 0.8].

Citation

To cite this benchmark, use the following references:

  • For the benchmark itself and its data:
S. Rave and J. Saak, Thermal Block. MORwiki - Model Order Reduction Wiki, 2020. https://modelreduction.org/morwiki/Thermal_Block
@MISC{morwiki_thermalblock,
  author =       {Rave, S. and Saak, J.},
  title =        {Thermal Block},
  howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  url =          {https://modelreduction.org/morwiki/Thermal_Block},
  year =         2020
}
  • For the background on the benchmark:
S. Rave and J. Saak, A Non-Stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction. e-prints 2003.00846, arXiv, math.NA (2020).
@INPROCEEDINGS{morRavS21,
  author =       {Rave, S. and Saak, J.},
  title =        {A Non-Stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction},
  booktitle =    {Model Reduction of Complex Dynamical Systems},
  series =       {International Series of Numerical Mathematics},
  volume =       {171},
  publisher =    {Springer},
  year =         2021,
  doi =          {10.1007/978-3-030-72983-7_16}
}

References

  1. S. Rave, J. Saak, An Non-Stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction, Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 349-356, 2021.
  2. P. Benner, S. W. R. Werner, MORLAB -- the Model Order Reduction LABoratory, Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 393--415, 2021.
  3. C. Himpe, Comparing (empirical-Gramian-based) model order reduction algorithms, Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 141--164, 2021.
  4. P. Benner, M. Köhler, J. Saak, Matrix equations, sparse solvers: M-M.E.S.S.-2.0.1 – philosophy, features and application for (parametric) model order reduction, Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 369--392, 2021.
  5. P. Mlinarić, S. Rave, J. Saak, Parametric model order reduction using pyMOR, Model Reduction of Complex Dynamical Systems, International Series of Numerical Mathematics 171: 357--367 , 2021.

Contact

Jens Saak