(→Plots) |
|||
(32 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:benchmark]] |
||
− | == Introduction == |
||
+ | [[Category:procedural]] |
||
− | On this page you will find a synthetic parametric model for which one can easily experiment with different system orders <math> n </math>, values of the parameter <math> \varepsilon </math>, as well as different poles and residues. |
||
+ | [[Category:parametric]] |
||
+ | [[Category:linear]] |
||
+ | [[Category:time invariant]] |
||
+ | [[Category:Parametric]] |
||
+ | [[Category:first differential order]] |
||
+ | [[Category:SISO]] |
||
+ | [[Category:Sparse]] |
||
+ | ==Description== |
||
− | Also, the decay of the Hankel singular values can be changed indirectly through the parameter <math> \varepsilon </math>. |
||
+ | <figure id="fig1">[[File:synth_poles.png|600px|thumb|right|<caption>System poles for different parameter values.</caption>]]</figure> |
||
− | == Model description == |
||
+ | On this page you will find a synthetic parametric model with one parameter for which one can easily experiment with different system orders, values of the parameter, as well as different poles and residues (see Fig. 1). |
||
− | The parameter <math>\varepsilon</math> scales the real part of the system poles, that is, <math>p_i=\varepsilon a_i+jb_i</math>. |
||
+ | Also, the decay of the Hankel singular values can be changed indirectly through the parameter. |
||
− | For a system in pole-residue form |
||
+ | ===Model=== |
||
+ | We consider a dynamical system in the frequency domain given by its pole-residue form of the transfer function |
||
− | :<math> H(s,\varepsilon) = \sum_{i=1}^{n}\frac{r_i}{s-p_i} = \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} </math> |
||
+ | :<math> |
||
+ | \begin{align} |
||
+ | H(s,\varepsilon) & = \sum_{k=1}^{N}\frac{r_{k}}{s-p_{k}}\\ |
||
+ | & = \sum_{k=1}^{N}\frac{r_{k}}{s-(\varepsilon a_{k} + jb_{k})}, |
||
+ | \end{align} |
||
+ | </math> |
||
+ | with <math>p_{k} = \varepsilon a_{k} + jb_{k}</math> the poles of the system, <math>j</math> the imaginary unit, and <math>r_{k}</math> the residues. |
||
− | we can write down the state-space realisation |
||
+ | The parameter <math>\varepsilon</math> is used to scale the real part of the system poles. |
||
+ | We can write down the state-space realization of the system's transfer function as |
||
+ | :<math> |
||
+ | \begin{align} |
||
+ | H(s,\varepsilon) = \widehat{C}(sI_{N} - (\varepsilon \widehat{A}_{\varepsilon} + \widehat{A}_{0}))^{-1}\widehat{B}, |
||
+ | \end{align} |
||
+ | </math> |
||
− | + | with the corresponding system matrices <math>\widehat{A}_{\varepsilon} \in \mathbb{R}^{N \times N}</math>, <math>\widehat{A}_{0} \in \mathbb{C}^{N \times N}</math>, <math>\widehat{B} \in \mathbb{R}^{N}</math>, and <math>\widehat{C}^{T} \in \mathbb{C}^{N}</math> given by |
|
+ | :<math> |
||
+ | \begin{align} |
||
+ | \varepsilon\widehat{A}_{\varepsilon} + \widehat{A}_{0} |
||
+ | & = \varepsilon \begin{bmatrix} a_{1} & & \\ & \ddots & \\ & & a_{N} \end{bmatrix} |
||
+ | + \begin{bmatrix} jb_{1} & & \\ & \ddots & \\ & & jb_{N} \end{bmatrix},\\ |
||
+ | \widehat{B} & = \begin{bmatrix}1, & \ldots, & 1 \end{bmatrix}^{T},\\ |
||
+ | \widehat{C} & = \begin{bmatrix}r_{1}, & \ldots, & r_{n} \end{bmatrix}. |
||
+ | \end{align} |
||
+ | </math> |
||
+ | One notices that the system matrices <math>\widehat{A}_{0}</math> and <math>\widehat{C}</math> have complex entries. |
||
− | with system matrices defined as |
||
+ | For rewriting the system with real matrices, we assume that <math>N</math> is even, <math>N=2m</math>, and that all system poles are complex and ordered in complex conjugate pairs, i.e., |
||
+ | :<math> |
||
+ | \begin{align} |
||
+ | p_{1} & = \varepsilon a_{1} + jb_{1},\\ |
||
+ | p_{2} & = \varepsilon a_{1} - jb_{1},\\ |
||
+ | & \ldots\\ |
||
+ | p_{N-1} & = \varepsilon a_{m} + jb_{m},\\ |
||
+ | p_{N} & = \varepsilon a_{m} - jb_{m}. |
||
+ | \end{align} |
||
+ | </math> |
||
+ | Corresponding to the system poles, also the residues are written in complex conjugate pairs |
||
− | :<math>\varepsilon \widehat{A}_\varepsilon + \widehat{A}_0 = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] ,</math> |
||
+ | :<math> |
||
− | :<math>\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.</math> |
||
+ | \begin{align} |
||
+ | r_{1} & = c_{1} + jd_{1},\\ |
||
+ | r_{2} & = c_{1} - jd_{1},\\ |
||
+ | & \ldots\\ |
||
+ | r_{N-1} & = c_{m} + jd_{m},\\ |
||
+ | r_N & = c_{m} - jd_{m}. |
||
+ | \end{align} |
||
+ | </math> |
||
+ | Using this, the realization of the dynamical system can be written with matrices having real entries by |
||
+ | :<math> |
||
+ | \begin{align} |
||
+ | A_{\varepsilon} & = \begin{bmatrix} A_{\varepsilon, 1} & & \\ & \ddots & \\ & & A_{\varepsilon, m} \end{bmatrix}, & |
||
+ | A_{0} & = \begin{bmatrix} A_{0, 1} & & \\ & \ddots & \\ & & A_{0, m} \end{bmatrix}, & |
||
+ | B & = \begin{bmatrix} B_{1} \\ \vdots \\ B_{m} \end{bmatrix}, & |
||
+ | C & = \begin{bmatrix} C_{1}, & \cdots, & C_{m} \end{bmatrix}, |
||
+ | \end{align} |
||
+ | </math> |
||
+ | with <math>A_{\varepsilon, k} = \begin{bmatrix} a_{k} & 0 \\ 0 & a_{k} \end{bmatrix}</math>, <math>A_{0, k} = \begin{bmatrix} 0 & b_{k} \\ -b_{k} & 0 \end{bmatrix}</math>, <math>B_{k} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}</math>, <math>C_{k} = \begin{bmatrix} c_{k}, & d_{k} \end{bmatrix}</math>. |
||
− | Notice that the system matrices have complex entries. |
||
+ | <figure id="fig2">[[File:synth_freq_resp.png|600px|thumb|right|<caption>Frequency response of synthetic parametric system for different parameter values.</caption>]]</figure> |
||
− | For simplicity, assume that <math> n </math> is even, <math> n=2k </math>, and that all system poles are complex and ordered in complex conjugate pairs, i.e. |
||
+ | ===Numerical Values=== |
||
− | :<math> p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k, </math> |
||
+ | <figure id="fig3">[[File:synth_hsv.png|600px|thumb|right|<caption>Hankel singular values of synthetic parametric system for different parameter values.</caption>]]</figure> |
||
− | and the residues also form complex conjugate pairs |
||
+ | We construct a system of order <math>N = 100</math>. |
||
− | :<math> r_1 = c_1+jd_1, r_2 = c_1-jd_1, \ldots, r_{n-1} = c_k+jd_k, r_n = c_k-jd_k. </math> |
||
+ | The numerical values for the different variables are |
||
+ | * <math>a_{k}</math> equally spaced in the interval <math>[-10^3, -10]</math>, |
||
− | Then a realization with matrices having real entries is given by |
||
+ | * <math>b_{k}</math> equally spaced in the interval <math>[10, 10^3]</math>, |
||
+ | * <math>c_{k} = 1</math>, |
||
− | :<math> A_\varepsilon = \left[\begin{array}{ccc} A_{\varepsilon,1} & & \\ & \ddots & \\ & & A_{\varepsilon,k}\end{array}\right], \quad A_0 = \left[\begin{array}{ccc} A_{0,1} & & \\ & \ddots & \\ & & A_{0,k}\end{array}\right], \quad B = \left[\begin{array}{c} B_1 \\ \vdots \\ B_k\end{array}\right], \quad C = \left[\begin{array}{ccc} C_1 & \cdots & C_k\end{array}\right], \quad D = 0,</math> |
||
+ | * <math>d_{k} = 0</math>, |
||
− | + | * <math>\varepsilon \in \left[\frac{1}{50}, 1\right]</math>. |
|
− | <math> A_{0,i} = \left[\begin{array}{cc} 0& b_i \\ -b_i & 0 \end{array}\right] </math>, |
||
− | <math> B_{i} = \left[\begin{array}{c} 2 \\ 0 \end{array}\right] </math>, |
||
− | <math> C_{i} = \left[\begin{array}{cc} c_i& d_i\end{array}\right] </math>. |
||
− | == Numerical values == |
||
+ | The frequency response of the transfer function <math>H(s,\varepsilon) = C(sI_{N}-(\varepsilon A_{\varepsilon} + A_{0}))^{-1}B</math> is plotted for parameter values <math>\varepsilon \in \left[\frac{1}{50}, \frac{1}{20}, \frac{1}{10}, \frac{1}{5}, \frac{1}{2}, 1\right]</math> in Fig. 2. |
||
− | We construct a system of order <math>n = 100</math>. The numerical values for the different variables are |
||
+ | Other interesting plots result for small values of the parameter <math>\varepsilon</math>. |
||
− | * <math>a_i </math> equally spaced in <math> [-10^3, -10]</math>, |
||
+ | For example, for <math>\varepsilon = \frac{1}{100}</math> or <math>\frac{1}{1000}</math>, the peaks in the frequency response become more pronounced, since the poles move closer to the imaginary axis. |
||
+ | For <math>\varepsilon \in \left[\frac{1}{50}, \frac{1}{20}, \frac{1}{10}, \frac{1}{5}, \frac{1}{2}, 1\right]</math>, we also plotted the decay of the Hankel singular values in Fig. 3. |
||
− | * <math>b_i </math> equally spaced in <math>[10, 10^3]</math>, |
||
+ | Notice that for small values of the parameter, the decay of the Hankel singular values is very slow. |
||
+ | ==Data and Scripts== |
||
− | * <math> c_i = 1</math>, |
||
+ | This benchmark includes one data set. The matrices can be downloaded in the [http://math.nist.gov/MatrixMarket/formats.html MatrixMarket] format: |
||
− | * <math> d_i = 0</math>, |
||
+ | * [[Media:Synth_matrices.tar.gz|Synth_matrices.tar.gz]] (1.28 kB) |
||
+ | The matrix name is used as an extension of the matrix file. |
||
+ | System data of arbitrary even order <math>N</math> can be generated in MATLAB or Octave by the following script: |
||
− | * <math>\varepsilon</math><math> \in [1/50,1]</math>. |
||
+ | <syntaxhighlight lang="octave"> |
||
+ | N = 100; % Order of the resulting system. |
||
+ | % Set coefficients. |
||
− | In MATLAB, the system matrices are easily formed as follows: |
||
+ | a = -linspace(1e1, 1e3, N/2).'; |
||
+ | b = linspace(1e1, 1e3, N/2).'; |
||
+ | c = ones(N/2, 1); |
||
+ | d = zeros(N/2, 1); |
||
+ | % Build 2x2 submatrices. |
||
− | <source lang="matlab"> |
||
+ | aa(1:2:N-1, 1) = a; |
||
− | n = 100; |
||
+ | aa(2:2:N, 1) = a; |
||
− | a = -linspace(1e1,1e3,n/2).'; b = linspace(1e1,1e3,n/2).'; |
||
+ | bb(1:2:N-1, 1) = b; |
||
− | c = ones(n/2,1); d = zeros(n/2,1); |
||
− | + | bb(2:2:N-2, 1) = 0; |
|
− | bb(1:2:n-1,1) = b; bb(2:2:n-2,1) = 0; |
||
− | Ae = spdiags(aa,0,n,n); |
||
− | A0 = spdiags([0;bb],1,n,n) + spdiags(-bb,-1,n,n); |
||
− | B = 2*sparse(mod([1:n],2)).'; |
||
− | C(1:2:n-1) = c.'; C(2:2:n) = d.'; C = sparse(C); |
||
− | </source> |
||
+ | % Set up system matrices. |
||
+ | Ae = spdiags(aa, 0, N, N); |
||
+ | A0 = spdiags([0; bb], 1, N, N) + spdiags(-bb, -1, N, N); |
||
+ | B = 2 * sparse(mod(1:N, 2)).'; |
||
+ | C(1:2:N-1) = c.'; |
||
+ | C(2:2:N) = d.'; |
||
+ | C = sparse(C); |
||
+ | </syntaxhighlight> |
||
+ | or in Python: |
||
− | The above system matrices <math>A_\varepsilon, A_0, B, C</math> are also available in [http://math.nist.gov/MatrixMarket/formats.html MatrixMarket] format [[Media:Synth_matrices.tar.gz|Synth_matrices.tar.gz]]. |
||
+ | <syntaxhighlight lang="python"> |
||
− | == Plots == |
||
+ | import numpy as np |
||
+ | import scipy.sparse as sps |
||
+ | N = 100 # Order of the resulting system. |
||
− | We plot the frequency response <math>H(s,\varepsilon) = C\big(sI-\varepsilon A_\varepsilon - A_0\big)^{-1}B</math> and poles for parameter values <math>\varepsilon \in [1/50, 1/20, 1/10, 1/5, 1/2, 1] </math>. |
||
+ | # Set coefficients. |
||
+ | a = -np.linspace(1e1, 1e3, N//2) |
||
+ | b = np.linspace(1e1, 1e3, N//2) |
||
+ | c = np.ones(N//2) |
||
+ | d = np.zeros(N//2) |
||
+ | # Build 2x2 submatrices. |
||
− | :[[Image:synth_freq_resp.png|frame|border|left|Frequency response of synthetic parametric system, for parameter values 1/50 (blue), 1/20 (green), 1/10 (red), 1/5 (teal), 1/2 (purple), 1 (yellow).]] |
||
+ | aa = np.empty(N) |
||
− | [[Image:synth_poles.png|frame|center|border|Poles of synthetic parametric system, for parameter values 1/50 (blue), 1/20 (green), 1/10 (red), 1/5 (teal), 1/2 (purple), 1 (yellow).]] |
||
+ | aa[::2] = a |
||
+ | aa[1::2] = a |
||
+ | bb = np.zeros(N) |
||
+ | bb[::2] = b |
||
+ | # Set up system matrices. |
||
+ | Ae = sps.diags(aa, format='csc') |
||
+ | A0 = sps.diags([bb, -bb], [1, -1], (N, N), format='csc') |
||
+ | B = np.zeros((N, 1)) |
||
+ | B[::2, :] = 2 |
||
+ | C = np.empty((1, N)) |
||
+ | C[0, ::2] = c |
||
+ | C[0, 1::2] = d |
||
+ | </syntaxhighlight> |
||
− | + | Beside that, the plots in Fig. 1 and Fig. 2 can be generated in MATLAB and Octave using the following script: |
|
− | < |
+ | <syntaxhighlight lang="octave"> |
+ | % Get residues of the system. |
||
− | r(1:2:n-1,1) = c+1j*d; r(2:2:n,1) = c-1j*d; |
||
+ | r(1:2:N-1, 1) = c + 1j * d; |
||
− | ep = [1/50; 1/20; 1/10; 1/5; 1/2; 1]; % parameter epsilon |
||
+ | r(2:2:N, 1) = c - 1j * d; |
||
− | jw = 1j*linspace(0,1.2e3,5000).'; % frequency grid |
||
− | for j = 1:length(ep) |
||
− | p(:,j) = [ep(j)*a+1j*b; ep(j)*a-1j*b]; % poles |
||
− | [jww,pp] = meshgrid(jw,p(:,j)); |
||
− | Hjw(j,:) = (r.')*(1./(jww-pp)); % freq. resp. |
||
− | end |
||
− | figure, loglog(imag(jw),abs(Hjw),'LineWidth',2) |
||
− | axis tight, xlim([6 1200]) |
||
− | xlabel('frequency (rad/sec)') |
||
− | ylabel('magnitude') |
||
− | title('Frequency response for different \epsilon') |
||
− | figure, plot(real(p),imag(p),'.') |
||
− | title('Poles for different \epsilon') |
||
− | </source> |
||
+ | ep = [1/50; 1/20; 1/10; 1/5; 1/2; 1]; % Parameter epsilon. |
||
+ | jw = 1j * linspace(0, 1.2e3, 5000).'; % Frequency grid. |
||
+ | % Computations for all given parameter values. |
||
− | Other interesting plots result for small values of the parameter. For example, for <math>\varepsilon = 1/100, 1/1000 </math>, the peaks in the frequency response become more pronounced, since the poles move closer to the imaginary axis. |
||
+ | p = zeros(2 * length(a), length(ep)); |
||
+ | Hjw = zeros(length(ep), 5000); |
||
+ | for k = 1:length(ep) |
||
+ | p(:, k) = [ep(k) * a + 1j * b; ep(k) * a - 1j * b]; % Poles. |
||
+ | [jww, pp] = meshgrid(jw, p(:, k)); |
||
+ | Hjw(k, :) = (r.') * (1 ./ (jww - pp)); % Frequency response. |
||
+ | end |
||
+ | % Plot poles. |
||
+ | figure; |
||
+ | plot(real(p), imag(p), '.', 'MarkerSize', 12); |
||
+ | xlabel('Re(p)'); |
||
+ | ylabel('Im(p)'); |
||
+ | legend( ... |
||
+ | '\epsilon = 1/50', ... |
||
+ | '\epsilon = 1/20', ... |
||
+ | '\epsilon = 1/10', ... |
||
+ | '\epsilon = 1/5', ... |
||
+ | '\epsilon = 1/2', ... |
||
+ | '\epsilon = 1'); |
||
+ | % Plot frequency response. |
||
− | Next, for <math>\varepsilon \in [1/50, 1/20, 1/10, 1/5, 1/2, 1] </math>, we also plot the decay of the Hankel singular values. Notice that for small values of the parameter, the decay of the Hankel singular values is very slow. |
||
+ | figure; |
||
+ | loglog(imag(jw), abs(Hjw), 'LineWidth', 2); |
||
+ | axis tight; |
||
+ | xlim([6 1200]); |
||
+ | xlabel('frequency (rad/sec)'); |
||
+ | ylabel('magnitude'); |
||
+ | legend( ... |
||
+ | '\epsilon = 1/50', ... |
||
+ | '\epsilon = 1/20', ... |
||
+ | '\epsilon = 1/10', ... |
||
+ | '\epsilon = 1/5', ... |
||
+ | '\epsilon = 1/2', ... |
||
+ | '\epsilon = 1'); |
||
+ | </syntaxhighlight> |
||
+ | or in Python: |
||
− | [[Image:synth_hsv.png|frame|border|center|Hankel singular values of synthetic parametric system, for parameter values 1/50 (blue), 1/20 (green), 1/10 (red), 1/5 (teal), 1/2 (purple), 1 (yellow).]] |
||
+ | <syntaxhighlight lang="python"> |
||
+ | import matplotlib.pyplot as plt |
||
+ | # Get residues of the system. |
||
+ | r = np.empty(N, dtype=complex) |
||
+ | r[::2] = c + 1j * d |
||
+ | r[1::2] = c - 1j * d |
||
+ | ep = [1/50, 1/20, 1/10, 1/5, 1/2, 1] # Parameter epsilon. |
||
+ | jw = 1j * np.geomspace(6, 1.2e3, 5000) # Frequency grid. |
||
+ | # Computations for all given parameter values. |
||
+ | p = np.zeros((len(ep), N), dtype=complex) |
||
+ | Hjw = np.zeros((len(ep), len(jw)), dtype=complex) |
||
+ | for k, epk in enumerate(ep): |
||
+ | # Poles. |
||
+ | p[k, :N//2] = epk * a + 1j * b |
||
+ | p[k, N//2:] = epk * a - 1j * b |
||
+ | # Frequency response. |
||
+ | Hjw[k, :] = (r / (jw[:, np.newaxis] - p[k])).sum(axis=1) |
||
+ | # Plot poles. |
||
− | '' [[User:Ionita|Ionita]] 14:38, 29 November 2011 (UTC) '' |
||
+ | fig, ax = plt.subplots() |
||
+ | for k, epk in enumerate(ep): |
||
+ | ax.plot(p[k].real, p[k].imag, '.', label=fr'$\varepsilon$ = {epk}') |
||
+ | ax.autoscale(tight=True) |
||
+ | ax.set_xlabel('Re(p)') |
||
+ | ax.set_ylabel('Im(p)') |
||
+ | ax.legend() |
||
+ | # Plot frequency response. |
||
− | [[Category:PMOR benchmark, linear, time invariant, one physical parameters, first order system, synthetic model ]] |
||
+ | fig, ax = plt.subplots() |
||
+ | for k, epk in enumerate(ep): |
||
+ | ax.loglog(jw.imag, np.abs(Hjw[k]), label=fr'$\varepsilon$ = {epk}', linewidth=2) |
||
+ | ax.autoscale(tight=True) |
||
+ | ax.set_xlabel('frequency (rad/sec)') |
||
+ | ax.set_ylabel('magnitude') |
||
+ | ax.legend() |
||
+ | </syntaxhighlight> |
||
+ | |||
+ | ==Dimensions== |
||
+ | |||
+ | System structure: |
||
+ | :<math> |
||
+ | \begin{align} |
||
+ | \dot{x}(t) &= (\varepsilon A_{\varepsilon} + A_{0})x(t) + Bu(t), \\ |
||
+ | y(t) &= Cx(t) |
||
+ | \end{align} |
||
+ | </math> |
||
+ | |||
+ | |||
+ | System dimensions: |
||
+ | |||
+ | <math>A_{\varepsilon} \in \mathbb{R}^{N \times N}</math>, |
||
+ | <math>A_{0} \in \mathbb{R}^{N \times N}</math>, |
||
+ | <math>B \in \mathbb{R}^{N \times 1}</math>, |
||
+ | <math>C \in \mathbb{R}^{1 \times N}</math> |
||
+ | |||
+ | |||
+ | System variants: |
||
+ | |||
+ | <tt>Synth_matrices</tt>: <math>N = 100</math>, |
||
+ | arbitrary even order <math>N</math> by using the [[#scr1|script]] |
||
+ | |||
+ | ==Citation== |
||
+ | |||
+ | To cite this benchmark and its data: |
||
+ | ::The MORwiki Community, '''Synthetic parametric model'''. hosted at MORwiki - Model Order Reduction Wiki, 2005. https://modelreduction.org/morwiki/Synthetic_parametric_model |
||
+ | |||
+ | @MISC{morwiki_synth_pmodel, |
||
+ | author = <nowiki>{{The MORwiki Community}}</nowiki>, |
||
+ | title = {Synthetic parametric model}, |
||
+ | howpublished = {hosted at {MORwiki} -- Model Order Reduction Wiki}, |
||
+ | url = <nowiki>{https://modelreduction.org/morwiki/Synthetic_parametric_model}</nowiki>, |
||
+ | year = 2005 |
||
+ | } |
||
+ | |||
+ | ==Contact== |
||
+ | |||
+ | ''[[User:Ionita]]'' |
Latest revision as of 07:40, 17 June 2025
Description
On this page you will find a synthetic parametric model with one parameter for which one can easily experiment with different system orders, values of the parameter, as well as different poles and residues (see Fig. 1). Also, the decay of the Hankel singular values can be changed indirectly through the parameter.
Model
We consider a dynamical system in the frequency domain given by its pole-residue form of the transfer function
with the poles of the system,
the imaginary unit, and
the residues.
The parameter
is used to scale the real part of the system poles.
We can write down the state-space realization of the system's transfer function as
with the corresponding system matrices ,
,
, and
given by
One notices that the system matrices and
have complex entries.
For rewriting the system with real matrices, we assume that
is even,
, and that all system poles are complex and ordered in complex conjugate pairs, i.e.,
Corresponding to the system poles, also the residues are written in complex conjugate pairs
Using this, the realization of the dynamical system can be written with matrices having real entries by
with ,
,
,
.
Numerical Values
We construct a system of order .
The numerical values for the different variables are
equally spaced in the interval
,
equally spaced in the interval
,
,
,
.
The frequency response of the transfer function is plotted for parameter values
in Fig. 2.
Other interesting plots result for small values of the parameter .
For example, for
or
, the peaks in the frequency response become more pronounced, since the poles move closer to the imaginary axis.
For , we also plotted the decay of the Hankel singular values in Fig. 3.
Notice that for small values of the parameter, the decay of the Hankel singular values is very slow.
Data and Scripts
This benchmark includes one data set. The matrices can be downloaded in the MatrixMarket format:
- Synth_matrices.tar.gz (1.28 kB)
The matrix name is used as an extension of the matrix file.
System data of arbitrary even order can be generated in MATLAB or Octave by the following script:
N = 100; % Order of the resulting system.
% Set coefficients.
a = -linspace(1e1, 1e3, N/2).';
b = linspace(1e1, 1e3, N/2).';
c = ones(N/2, 1);
d = zeros(N/2, 1);
% Build 2x2 submatrices.
aa(1:2:N-1, 1) = a;
aa(2:2:N, 1) = a;
bb(1:2:N-1, 1) = b;
bb(2:2:N-2, 1) = 0;
% Set up system matrices.
Ae = spdiags(aa, 0, N, N);
A0 = spdiags([0; bb], 1, N, N) + spdiags(-bb, -1, N, N);
B = 2 * sparse(mod(1:N, 2)).';
C(1:2:N-1) = c.';
C(2:2:N) = d.';
C = sparse(C);
or in Python:
import numpy as np
import scipy.sparse as sps
N = 100 # Order of the resulting system.
# Set coefficients.
a = -np.linspace(1e1, 1e3, N//2)
b = np.linspace(1e1, 1e3, N//2)
c = np.ones(N//2)
d = np.zeros(N//2)
# Build 2x2 submatrices.
aa = np.empty(N)
aa[::2] = a
aa[1::2] = a
bb = np.zeros(N)
bb[::2] = b
# Set up system matrices.
Ae = sps.diags(aa, format='csc')
A0 = sps.diags([bb, -bb], [1, -1], (N, N), format='csc')
B = np.zeros((N, 1))
B[::2, :] = 2
C = np.empty((1, N))
C[0, ::2] = c
C[0, 1::2] = d
Beside that, the plots in Fig. 1 and Fig. 2 can be generated in MATLAB and Octave using the following script:
% Get residues of the system.
r(1:2:N-1, 1) = c + 1j * d;
r(2:2:N, 1) = c - 1j * d;
ep = [1/50; 1/20; 1/10; 1/5; 1/2; 1]; % Parameter epsilon.
jw = 1j * linspace(0, 1.2e3, 5000).'; % Frequency grid.
% Computations for all given parameter values.
p = zeros(2 * length(a), length(ep));
Hjw = zeros(length(ep), 5000);
for k = 1:length(ep)
p(:, k) = [ep(k) * a + 1j * b; ep(k) * a - 1j * b]; % Poles.
[jww, pp] = meshgrid(jw, p(:, k));
Hjw(k, :) = (r.') * (1 ./ (jww - pp)); % Frequency response.
end
% Plot poles.
figure;
plot(real(p), imag(p), '.', 'MarkerSize', 12);
xlabel('Re(p)');
ylabel('Im(p)');
legend( ...
'\epsilon = 1/50', ...
'\epsilon = 1/20', ...
'\epsilon = 1/10', ...
'\epsilon = 1/5', ...
'\epsilon = 1/2', ...
'\epsilon = 1');
% Plot frequency response.
figure;
loglog(imag(jw), abs(Hjw), 'LineWidth', 2);
axis tight;
xlim([6 1200]);
xlabel('frequency (rad/sec)');
ylabel('magnitude');
legend( ...
'\epsilon = 1/50', ...
'\epsilon = 1/20', ...
'\epsilon = 1/10', ...
'\epsilon = 1/5', ...
'\epsilon = 1/2', ...
'\epsilon = 1');
or in Python:
import matplotlib.pyplot as plt
# Get residues of the system.
r = np.empty(N, dtype=complex)
r[::2] = c + 1j * d
r[1::2] = c - 1j * d
ep = [1/50, 1/20, 1/10, 1/5, 1/2, 1] # Parameter epsilon.
jw = 1j * np.geomspace(6, 1.2e3, 5000) # Frequency grid.
# Computations for all given parameter values.
p = np.zeros((len(ep), N), dtype=complex)
Hjw = np.zeros((len(ep), len(jw)), dtype=complex)
for k, epk in enumerate(ep):
# Poles.
p[k, :N//2] = epk * a + 1j * b
p[k, N//2:] = epk * a - 1j * b
# Frequency response.
Hjw[k, :] = (r / (jw[:, np.newaxis] - p[k])).sum(axis=1)
# Plot poles.
fig, ax = plt.subplots()
for k, epk in enumerate(ep):
ax.plot(p[k].real, p[k].imag, '.', label=fr'$\varepsilon$ = {epk}')
ax.autoscale(tight=True)
ax.set_xlabel('Re(p)')
ax.set_ylabel('Im(p)')
ax.legend()
# Plot frequency response.
fig, ax = plt.subplots()
for k, epk in enumerate(ep):
ax.loglog(jw.imag, np.abs(Hjw[k]), label=fr'$\varepsilon$ = {epk}', linewidth=2)
ax.autoscale(tight=True)
ax.set_xlabel('frequency (rad/sec)')
ax.set_ylabel('magnitude')
ax.legend()
Dimensions
System structure:
System dimensions:
,
,
,
System variants:
Synth_matrices: ,
arbitrary even order
by using the script
Citation
To cite this benchmark and its data:
- The MORwiki Community, Synthetic parametric model. hosted at MORwiki - Model Order Reduction Wiki, 2005. https://modelreduction.org/morwiki/Synthetic_parametric_model
@MISC{morwiki_synth_pmodel, author = {{The MORwiki Community}}, title = {Synthetic parametric model}, howpublished = {hosted at {MORwiki} -- Model Order Reduction Wiki}, url = {https://modelreduction.org/morwiki/Synthetic_parametric_model}, year = 2005 }