Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Penzl's FOM"

m (infobox string)
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{preliminary}} <!-- Do not remove -->
 
 
 
[[Category:benchmark]]
 
[[Category:benchmark]]
 
[[Category:SLICOT]]
 
[[Category:SLICOT]]
Line 7: Line 5:
 
[[Category:Sparse]]
 
[[Category:Sparse]]
   
  +
{{Infobox
'''This is a stub. Please expand.'''
 
  +
|Title = Penzl's FOM
  +
|Benchmark ID = penzlFOM_n1006m1q1
  +
|Category = slicot
  +
|System-Class = LTI-FOS
  +
|nstates = 1006
  +
|ninputs = 1
  +
|noutputs = 1
  +
|nparameters = 0
  +
|components = A, B, C
  +
|License = NA
  +
|Creator = [[User:Himpe]]
  +
|Editor =
  +
* [[User:Himpe]]
  +
* [[User:Yue]]
  +
|Zenodo-link = NA
  +
}}
  +
 
==Description==
   
 
This benchmark is an artificial example system of order <math>1006</math> from <ref name="penzl06"/> also listed in <ref name="chahlaoui02"/>. It has long been regarded as a standard "full order model" (FOM) for testing new methods.
==Description: Full Order Model==
 
   
This benchmark is an artificial example system of order <math>1006</math> from <ref name="penzl06"/> also listed in <ref name="chahlaoui02"/>.
 
 
The benchmark system consists of the following system components:
 
The benchmark system consists of the following system components:
   
 
<math>
 
<math>
 
\begin{array}{rcl}
 
\begin{array}{rcl}
A &=& \begin{pmatrix} A_1 \\ & A_2 \\ & & A_3 \\ & & & A_4 \end{pmatrix}, \;
+
A &=& \begin{pmatrix} A_1 \\ & A_2 \\ & & A_3 \\ & & & A_4 \end{pmatrix}, \\
A_1 = \begin{pmatrix} -1 & 100 \\ -100 & -1 \end{pmatrix}, \;
+
A_1 &=& \begin{pmatrix} -1 & 100 \\ -100 & -1 \end{pmatrix}, \;
 
A_2 = \begin{pmatrix} -1 & 200 \\ -200 & -1 \end{pmatrix}, \;
 
A_2 = \begin{pmatrix} -1 & 200 \\ -200 & -1 \end{pmatrix}, \;
 
A_3 = \begin{pmatrix} -1 & 400 \\ -400 & -1 \end{pmatrix}, \;
 
A_3 = \begin{pmatrix} -1 & 400 \\ -400 & -1 \end{pmatrix}, \;
Line 26: Line 41:
 
</math>
 
</math>
   
  +
This system is a theoretical construct, but features a non-smooth [[wikipedia:Bode_plot|Bode plot]] with three spikes.
   
 
===MIMO Variant===
 
===MIMO Variant===
Line 33: Line 49:
 
===Parametric Variant===
 
===Parametric Variant===
   
In, a parametric variant of this benchmark is used by redefining
+
In <ref name="Ionita14"/>, a parametric variant of this benchmark is formulated by redefining
 
<math>
 
<math>
 
A_1 = \begin{pmatrix} -1 & p \\ -p & -1 \end{pmatrix}.
 
A_1 = \begin{pmatrix} -1 & p \\ -p & -1 \end{pmatrix}.
Line 99: Line 115:
 
<ref name="penzl06"> T. Penzl. <span class="plainlinks">[https://doi.org/10.1016/j.laa.2006.01.007 Algorithms for Model Reduction of Large Dynamical Systems]</span>. Linear Algebra and its Application 415(2--3): 322--343, 2006.</ref>
 
<ref name="penzl06"> T. Penzl. <span class="plainlinks">[https://doi.org/10.1016/j.laa.2006.01.007 Algorithms for Model Reduction of Large Dynamical Systems]</span>. Linear Algebra and its Application 415(2--3): 322--343, 2006.</ref>
   
<ref name="heyouni08"> M. Heyouni, K. Jbilou, A. Messaoudi, K. Tabaa. <span class="plainlinks">[https://doi.org/10.1590/S0101-82052008000200006 Model Reduction in Large-Scale MIMO Dynamical Systems via the Block Lanczos Method]</span>. Computational & Applied Mathematics 27(11): 211--236, 2008.</ref>
+
<ref name="heyouni08"> M. Heyouni, K. Jbilou, A. Messaoudi, K. Tabaa. <span class="plainlinks">[https://www.scielo.br/j/cam/a/Sq6GFZqcXSwNQKk3SmpB46p/?lang=en Model Reduction in Large-Scale MIMO Dynamical Systems via the Block Lanczos Method]</span>. Computational & Applied Mathematics 27(11): 211--236, 2008.</ref>
   
 
<ref name="chahlaoui02"> Y. Chahlaoui, P. Van Dooren, <span class="plainlinks">[http://eprints.maths.manchester.ac.uk/1040/1/ChahlaouiV02a.pdf A collection of Benchmark examples for model reduction of linear time invariant dynamical systems]</span>, Working Note 2002-2: 2002.</ref>
 
<ref name="chahlaoui02"> Y. Chahlaoui, P. Van Dooren, <span class="plainlinks">[http://eprints.maths.manchester.ac.uk/1040/1/ChahlaouiV02a.pdf A collection of Benchmark examples for model reduction of linear time invariant dynamical systems]</span>, Working Note 2002-2: 2002.</ref>
   
 
<ref name="chahlaoui05"> Y. Chahlaoui, P. Van Dooren, <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_24 Benchmark Examples for Model Reduction of Linear Time-Invariant Dynamical Systems]</span>, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 379--392, 2005.</ref>
 
<ref name="chahlaoui05"> Y. Chahlaoui, P. Van Dooren, <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_24 Benchmark Examples for Model Reduction of Linear Time-Invariant Dynamical Systems]</span>, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 379--392, 2005.</ref>
  +
  +
  +
<ref name="Ionita14"> A. C. Ionita,A. C. Antoulas, <span class="plainlinks">[https://doi.org/10.1137/130914619 Data-Driven Parametrized Model Reduction in the Loewner Framework]</span>, SIAM J. Sci. Comput. 36(3): A984–A1007, 2014.</ref>
   
 
</references>
 
</references>

Latest revision as of 11:38, 30 November 2023


Penzl's FOM
Background
Benchmark ID

penzlFOM_n1006m1q1

Category

slicot

System-Class

LTI-FOS

Parameters
nstates
1006
ninputs

1

noutputs

1

nparameters

0

components

A, B, C

Copyright
License

NA

Creator

Christian Himpe

Editor
Location

NA


Description

This benchmark is an artificial example system of order 1006 from [1] also listed in [2]. It has long been regarded as a standard "full order model" (FOM) for testing new methods.

The benchmark system consists of the following system components:


\begin{array}{rcl}
A &=& \begin{pmatrix} A_1 \\ & A_2 \\ & & A_3 \\ & & & A_4 \end{pmatrix}, \\
A_1 &=& \begin{pmatrix} -1 & 100 \\ -100 & -1 \end{pmatrix}, \;
A_2 = \begin{pmatrix} -1 & 200 \\ -200 & -1 \end{pmatrix}, \;
A_3 = \begin{pmatrix} -1 & 400 \\ -400 & -1 \end{pmatrix}, \;
A_4 = \begin{pmatrix} -1 \\ & -2 \\ & & \ddots \\ & & & -1000 \end{pmatrix}, \\
B &=& \begin{pmatrix} 10 & 10 & 10 & 10 & 10 & 10 & 1 & \dots & 1 \end{pmatrix}^T, \\
C &=& B^T.
\end{array}

This system is a theoretical construct, but features a non-smooth Bode plot with three spikes.

MIMO Variant

In [3] a MIMO variant of this benchmark is utilized by adding random vectors to B and C.

Parametric Variant

In [4], a parametric variant of this benchmark is formulated by redefining 
A_1 = \begin{pmatrix} -1 & p \\ -p & -1 \end{pmatrix}.

Origin

This benchmark is part of the SLICOT Benchmark Examples for Model Reduction[5].


Data

The system matrices A, B, C are available from the SLICOT benchmarks page: fom.zip and are stored as MATLAB .mat file.


Dimensions

System structure:


\begin{array}{rcl}
\dot{x}(t) &=& Ax(t) + Bu(t) \\
y(t) &=& Cx(t)
\end{array}

System dimensions:

A \in \mathbb{R}^{1006 \times 1006}, B \in \mathbb{R}^{1006 \times 1}, C \in \mathbb{R}^{1 \times 1006},


Citation

To cite this benchmark, use the following references:

  • For the benchmark itself and its data:
Niconet e.V., SLICOT - Subroutine Library in Systems and Control Theory, http://www.slicot.org
@MANUAL{slicot_fom,
 title =        {{SLICOT} - Subroutine Library in Systems and Control Theory},
 organization = {Niconet e.V.}
 address =      {\url{http://www.slicot.org}},
 key =          {SLICOT}
}
  • For the background on the benchmark:
@ARTICLE{morPen06,
 author =       {T. Penzl},
 title =        {Algorithms for Model Reduction of Large Dynamical Systems},
 journal =      {Linear Algebra and its Application},
 volume =       {415},
 number =       {2--3},
 pages =        {322--343},
 year =         {2006},
 doi =          {10.1016/j.laa.2006.01.007}
}

References

  1. T. Penzl. Algorithms for Model Reduction of Large Dynamical Systems. Linear Algebra and its Application 415(2--3): 322--343, 2006.
  2. Y. Chahlaoui, P. Van Dooren, A collection of Benchmark examples for model reduction of linear time invariant dynamical systems, Working Note 2002-2: 2002.
  3. M. Heyouni, K. Jbilou, A. Messaoudi, K. Tabaa. Model Reduction in Large-Scale MIMO Dynamical Systems via the Block Lanczos Method. Computational & Applied Mathematics 27(11): 211--236, 2008.
  4. A. C. Ionita,A. C. Antoulas, Data-Driven Parametrized Model Reduction in the Loewner Framework, SIAM J. Sci. Comput. 36(3): A984–A1007, 2014.
  5. Y. Chahlaoui, P. Van Dooren, Benchmark Examples for Model Reduction of Linear Time-Invariant Dynamical Systems, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 379--392, 2005.