Kuerschner (talk | contribs) |
m (→Contact) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 7: | Line 7: | ||
The following implementations are available at [https://sites.google.com/site/rommes/software Joost Rommes'] homepage. |
The following implementations are available at [https://sites.google.com/site/rommes/software Joost Rommes'] homepage. |
||
− | * '''S'''ubspace '''A'''ccelerated '''D'''ominant '''P'''ole '''A'''lgorithm ('''SADPA''') for first order SISO systems <ref name="RomM06a" |
+ | * '''S'''ubspace '''A'''ccelerated '''D'''ominant '''P'''ole '''A'''lgorithm ('''SADPA''') for first order SISO systems <ref name="RomM06a"/><ref name="Rom07"/> , |
− | * '''S'''ubspace '''A'''ccelerated '''M'''IMO '''D'''ominant '''P'''ole Algorithm ('''SAMDP''') for first order MIMO systems <ref name="RomM06b" |
+ | * '''S'''ubspace '''A'''ccelerated '''M'''IMO '''D'''ominant '''P'''ole Algorithm ('''SAMDP''') for first order MIMO systems <ref name="RomM06b"/><ref name="Rom07"/>, |
− | * '''S'''ubspace '''A'''ccelerated '''Q'''uadratic '''D'''ominant '''P'''ole '''A'''lgorithm ('''SAQDPA''') for second order SISO systems <ref name="RomM08" |
+ | * '''S'''ubspace '''A'''ccelerated '''Q'''uadratic '''D'''ominant '''P'''ole '''A'''lgorithm ('''SAQDPA''') for second order SISO systems <ref name="RomM08"/><ref name="Rom07"/>. |
+ | |||
+ | A extension of '''SAQDPA''' for second order MIMO systems is discussed in <ref name="Rom07"/><ref name="morBenKTetal16"/>. |
||
==References== |
==References== |
||
+ | |||
<references> |
<references> |
||
+ | |||
− | <ref name="RomM06a">J. Rommes and N. Martins, "<span class="plainlinks">[ |
+ | <ref name="RomM06a">J. Rommes and N. Martins, "<span class="plainlinks">[https://doi.org/10.1109/TPWRS.2006.876671 Efficient computation of transfer function dominant poles using subspace acceleration]</span>", IEEE Transactions on |
Power Systems, vol.21, no.3, pp.1218-1226, 2006</ref> |
Power Systems, vol.21, no.3, pp.1218-1226, 2006</ref> |
||
− | <ref name="RomM06b">J. Rommes and N. Martins, "<span class="plainlinks">[ |
+ | <ref name="RomM06b">J. Rommes and N. Martins, "<span class="plainlinks">[https://doi.org/10.1109/TPWRS.2006.881154 Efficient computation of multivariable transfer function dominant poles using subspace acceleration]</span>", IEEE Transactions on |
Power Systems, vol.21, no.4, pp.1471-1483, 2006</ref> |
Power Systems, vol.21, no.4, pp.1471-1483, 2006</ref> |
||
− | <ref name="Rom07">J. Rommes, "<span class="plainlinks">[ |
+ | <ref name="Rom07">J. Rommes, "<span class="plainlinks">[https://dspace.library.uu.nl/handle/1874/21787 Methods for eigenvalue problems with applications in model order reduction]</span>", Ph.D. dissertation, Universiteit |
Utrecht, 2007.</ref> |
Utrecht, 2007.</ref> |
||
− | <ref name="RomM08">J. Rommes and N. Martins, "<span class="plainlinks">[ |
+ | <ref name="RomM08">J. Rommes and N. Martins, "<span class="plainlinks">[https://doi.org/10.1137/070684562 Computing transfer function dominant poles of large-scale second-order dynamical systems]</span>" |
SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.</ref> |
SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.</ref> |
||
+ | <ref name="morBenKTetal16">P. Benner, P. Kürschner, N. Truhar, Z. Tomljanović, "<span class="plainlinks">[https://doi.org/10.1002/zamm.201400158 Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm]</span>", ZAMM, 96(5), pp. 604–619, 2016.</ref> |
||
⚫ | |||
+ | |||
⚫ | |||
== Contact == |
== Contact == |
||
− | [[User:kuerschner| Patrick Kürschner |
+ | [[User:kuerschner| Patrick Kürschner]] |
+ | |||
+ | [[User:Rommes| Joost Rommesr]] |
Latest revision as of 15:38, 22 October 2020
DPA stands for the Dominant Pole Algorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out Modal truncation.
The following implementations are available at Joost Rommes' homepage.
- Subspace Accelerated Dominant Pole Algorithm (SADPA) for first order SISO systems [1][2] ,
- Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP) for first order MIMO systems [3][2],
- Subspace Accelerated Quadratic Dominant Pole Algorithm (SAQDPA) for second order SISO systems [4][2].
A extension of SAQDPA for second order MIMO systems is discussed in [2][5].
References
- ↑ J. Rommes and N. Martins, "Efficient computation of transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.3, pp.1218-1226, 2006
- ↑ 2.0 2.1 2.2 2.3 J. Rommes, "Methods for eigenvalue problems with applications in model order reduction", Ph.D. dissertation, Universiteit Utrecht, 2007.
- ↑ J. Rommes and N. Martins, "Efficient computation of multivariable transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.4, pp.1471-1483, 2006
- ↑ J. Rommes and N. Martins, "Computing transfer function dominant poles of large-scale second-order dynamical systems" SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.
- ↑ P. Benner, P. Kürschner, N. Truhar, Z. Tomljanović, "Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm", ZAMM, 96(5), pp. 604–619, 2016.