Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "DPA"

 
(2 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
The following implementations are available at [https://sites.google.com/site/rommes/software Joost Rommes'] homepage.
 
The following implementations are available at [https://sites.google.com/site/rommes/software Joost Rommes'] homepage.
   
* '''S'''ubspace '''A'''ccelerated '''D'''ominant '''P'''ole '''A'''lgorithm ('''SADPA''') for first order SISO systems <ref name="RomM06a"></ref><ref name="Rom07"></ref> ,
+
* '''S'''ubspace '''A'''ccelerated '''D'''ominant '''P'''ole '''A'''lgorithm ('''SADPA''') for first order SISO systems <ref name="RomM06a"/><ref name="Rom07"/> ,
* '''S'''ubspace '''A'''ccelerated '''M'''IMO '''D'''ominant '''P'''ole Algorithm ('''SAMDP''') for first order MIMO systems <ref name="RomM06b"></ref><ref name="Rom07"></ref>,
+
* '''S'''ubspace '''A'''ccelerated '''M'''IMO '''D'''ominant '''P'''ole Algorithm ('''SAMDP''') for first order MIMO systems <ref name="RomM06b"/><ref name="Rom07"/>,
* '''S'''ubspace '''A'''ccelerated '''Q'''uadratic '''D'''ominant '''P'''ole '''A'''lgorithm ('''SAQDPA''') for second order SISO systems <ref name="RomM08"></ref><ref name="Rom07"></ref>,
+
* '''S'''ubspace '''A'''ccelerated '''Q'''uadratic '''D'''ominant '''P'''ole '''A'''lgorithm ('''SAQDPA''') for second order SISO systems <ref name="RomM08"/><ref name="Rom07"/>.
  +
  +
A extension of '''SAQDPA''' for second order MIMO systems is discussed in <ref name="Rom07"/><ref name="morBenKTetal16"/>.
 
==References==
 
==References==
  +
 
<references>
 
<references>
  +
<ref name="RomM06a">J. Rommes and N. Martins, "<span class="plainlinks">[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=34850&arnumber=1664957&count=60&index=22 Efficient computation of transfer function dominant poles using subspace acceleration]</span>", IEEE Transactions on
+
<ref name="RomM06a">J. Rommes and N. Martins, "<span class="plainlinks">[https://doi.org/10.1109/TPWRS.2006.876671 Efficient computation of transfer function dominant poles using subspace acceleration]</span>", IEEE Transactions on
 
Power Systems, vol.21, no.3, pp.1218-1226, 2006</ref>
 
Power Systems, vol.21, no.3, pp.1218-1226, 2006</ref>
   
<ref name="RomM06b">J. Rommes and N. Martins, "<span class="plainlinks">[http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=36135&arnumber=1717547&count=61&index=0 Efficient computation of multivariable transfer function dominant poles using subspace acceleration]</span>", IEEE Transactions on
+
<ref name="RomM06b">J. Rommes and N. Martins, "<span class="plainlinks">[https://doi.org/10.1109/TPWRS.2006.881154 Efficient computation of multivariable transfer function dominant poles using subspace acceleration]</span>", IEEE Transactions on
 
Power Systems, vol.21, no.4, pp.1471-1483, 2006</ref>
 
Power Systems, vol.21, no.4, pp.1471-1483, 2006</ref>
   
<ref name="Rom07">J. Rommes, "<span class="plainlinks">[http://igitur-archive.library.uu.nl/dissertations/2007-0626-202553/index.htm Methods for eigenvalue problems with applications in model order reduction]</span>", Ph.D. dissertation, Universiteit
+
<ref name="Rom07">J. Rommes, "<span class="plainlinks">[https://dspace.library.uu.nl/handle/1874/21787 Methods for eigenvalue problems with applications in model order reduction]</span>", Ph.D. dissertation, Universiteit
 
Utrecht, 2007.</ref>
 
Utrecht, 2007.</ref>
   
<ref name="RomM08">J. Rommes and N. Martins, "<span class="plainlinks">[http://epubs.siam.org/action/showAbstract?page=2137&volume=30&issue=4&journalCode=sjoce3 Computing transfer function dominant poles of large-scale second-order dynamical systems]</span>
+
<ref name="RomM08">J. Rommes and N. Martins, "<span class="plainlinks">[https://doi.org/10.1137/070684562 Computing transfer function dominant poles of large-scale second-order dynamical systems]</span>"
 
SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.</ref>
 
SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.</ref>
   
  +
<ref name="morBenKTetal16">P. Benner, P. Kürschner, N. Truhar, Z. Tomljanovi&#263;, "<span class="plainlinks">[https://doi.org/10.1002/zamm.201400158 Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm]</span>", ZAMM, 96(5), pp. 604–619, 2016.</ref>
</ references>
 
  +
 
</references>
   
 
== Contact ==
 
== Contact ==
[[User:kuerschner| Patrick Kürschner]] [[User:Rommes| Joost Rommesr]]
+
[[User:kuerschner| Patrick Kürschner]]
  +
  +
[[User:Rommes| Joost Rommesr]]

Latest revision as of 15:38, 22 October 2020


DPA stands for the Dominant Pole Algorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out Modal truncation.

The following implementations are available at Joost Rommes' homepage.

  • Subspace Accelerated Dominant Pole Algorithm (SADPA) for first order SISO systems [1][2] ,
  • Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP) for first order MIMO systems [3][2],
  • Subspace Accelerated Quadratic Dominant Pole Algorithm (SAQDPA) for second order SISO systems [4][2].

A extension of SAQDPA for second order MIMO systems is discussed in [2][5].

References

  1. J. Rommes and N. Martins, "Efficient computation of transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.3, pp.1218-1226, 2006
  2. 2.0 2.1 2.2 2.3 J. Rommes, "Methods for eigenvalue problems with applications in model order reduction", Ph.D. dissertation, Universiteit Utrecht, 2007.
  3. J. Rommes and N. Martins, "Efficient computation of multivariable transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.4, pp.1471-1483, 2006
  4. J. Rommes and N. Martins, "Computing transfer function dominant poles of large-scale second-order dynamical systems" SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.
  5. P. Benner, P. Kürschner, N. Truhar, Z. Tomljanović, "Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm", ZAMM, 96(5), pp. 604–619, 2016.

Contact

Patrick Kürschner

Joost Rommesr