Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Peek Inductor"

(verify peek inductor)
Line 5: Line 5:
 
<figure id="fig1">[[File:Peek1.jpg|490px|thumb|right|<caption>Spiral inductor with part of overhanging copper plane</caption>]]</figure>
 
<figure id="fig1">[[File:Peek1.jpg|490px|thumb|right|<caption>Spiral inductor with part of overhanging copper plane</caption>]]</figure>
   
The description of the [[wikipedia:Partial_element_equivalent_circuit|PEEC]] model of a spiral inductor can be found in [https://www.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor.pdf PeekInductor.pdf].
+
The description of the [[wikipedia:Partial_element_equivalent_circuit|PEEC]] model of a spiral inductor can be found in [https://csc.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor.pdf PeekInductor.pdf].
   
 
The complex impedance is:
 
The complex impedance is:
Line 13: Line 13:
 
</math>
 
</math>
   
A plots of <math>Resis(w)</math> can be found in [https://www.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-Rspiral_skin.pdf PeekInductor-Rspiral_skin.pdf] and a plot of <math>Induc(w)</math> in [https://www.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-Lspiral_skin.pdf PeekInductor-Lspiral_skin.pdf].
+
A plots of <math>Resis(w)</math> can be found in [https://csc.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-Rspiral_skin.pdf PeekInductor-Rspiral_skin.pdf] and a plot of <math>Induc(w)</math> in [https://csc.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-Lspiral_skin.pdf PeekInductor-Lspiral_skin.pdf].
   
 
==Origin==
 
==Origin==
Line 29: Line 29:
 
</math>
 
</math>
   
and can be downloaded as [https://www.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-dim1e3-spiral_inductor_peec.tar.gz PeekInductor-dim1e3-spiral_inductor_peec.tar.gz] (10.5 MB).
+
and can be downloaded as [https://csc.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-dim1e3-spiral_inductor_peec.tar.gz PeekInductor-dim1e3-spiral_inductor_peec.tar.gz] (10.5 MB).
   
 
Short [[wikipedia:MATLAB|Matlab]] files to:
 
Short [[wikipedia:MATLAB|Matlab]] files to:
Line 37: Line 37:
 
* produce symmetrized standard state-space system: <math>\dot{x}(t) = A_{symm}x(t)+ B_{symm}u(t)</math>, <math>y(t) = B_{symm}^\intercal x(t)</math>, where <math>A_{symm}</math> is symmetric.
 
* produce symmetrized standard state-space system: <math>\dot{x}(t) = A_{symm}x(t)+ B_{symm}u(t)</math>, <math>y(t) = B_{symm}^\intercal x(t)</math>, where <math>A_{symm}</math> is symmetric.
   
can be found in [https://www.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-plot_spiral.tar.gz PeekInductor-plot_spiral.tar.gz]
+
can be found in [https://csc.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-plot_spiral.tar.gz PeekInductor-plot_spiral.tar.gz]
   
 
==Dimensions==
 
==Dimensions==

Revision as of 11:00, 14 December 2021


Description: Spiral Inductor PEEC Model

Figure 1: Spiral inductor with part of overhanging copper plane

The description of the PEEC model of a spiral inductor can be found in PeekInductor.pdf.

The complex impedance is:


Z(w) = Resis(w)+i*w*Induc(w) = G(i*w)^{-1}=(B^\intercal(-A+i*w*E)^{-1}B)^{-1}

A plots of Resis(w) can be found in PeekInductor-Rspiral_skin.pdf and a plot of Induc(w) in PeekInductor-Lspiral_skin.pdf.

Origin

This benchmark is part of the Oberwolfach Benchmark Collection[1]; No. 38891, see [2].

Data

The model is of order N=1434 and of the form:


\begin{array}{rcl}
E \dot{x}(t) &=& Ax(t) + Bu(t) \\
y(t) &=& B^\intercal x(t)
\end{array}

and can be downloaded as PeekInductor-dim1e3-spiral_inductor_peec.tar.gz (10.5 MB).

Short Matlab files to:

  • plot Resis(w) and Induc(w),
  • perform a PRIMA reduction of order 50,
  • produce symmetrized standard state-space system: \dot{x}(t) = A_{symm}x(t)+ B_{symm}u(t), y(t) = B_{symm}^\intercal x(t), where A_{symm} is symmetric.

can be found in PeekInductor-plot_spiral.tar.gz

Dimensions

System structure:


\begin{align}
E \dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= B^\intercal x(t)
\end{align}

System dimensions:

E \in \mathbb{R}^{1434 \times 1434}, A \in \mathbb{R}^{1434 \times 1434}, B \in \mathbb{R}^{1434 \times 1}.

Citation

To cite this benchmark, use the following references:

  • For the benchmark itself and its data:
The MORwiki Community, Peek Inductor. MORwiki - Model Order Reduction Wiki, 2018. http://modelreduction.org/index.php/Peek_Inductor
@MISC{morwiki_peek,
  author =       {{The MORwiki Community}},
  title =        {Peek Inductor},
  howpublished = {{MORwiki} -- Model Order Reduction Wiki},
  url =          {http://modelreduction.org/index.php/Peek_Inductor},
  year =         {20XX}
}
  • For the background on the benchmark:
@INCOLLECTION{morLiK05,
  author =       {J.R. Li, M. Kamon},
  title =        {PEEC Model of a Spiral Inductor Generated by Fasthenry},
  booktitle =    {Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering},
  volume =       {45},
  pages =        {373--377},
  year =         {2005},
  doi =          {10.1007/3-540-27909-1_23}
}

References

  1. J.G. Korvink, E.B. Rudnyi, Oberwolfach Benchmark Collection, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 311--315, 2005.
  2. J.R. Li, M. Kamon, PEEC Model of a Spiral Inductor Generated by Fasthenry. In: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol 45: 373--377, 2005.