Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Stokes equation"

(init Stokes)
 
(Stokes description init)
Line 1: Line 1:
 
{{preliminary}} <!-- Do not remove -->
 
{{preliminary}} <!-- Do not remove -->
   
  +
  +
[[Category:benchmark]]
  +
[[Category:procedural]]
  +
[[Category:SISO]]
 
[[Category:linear]]
 
[[Category:linear]]
  +
[[Category:Sparse]]
   
 
==Description==
 
==Description==
  +
This benchmark presents the two-dimensional instationary [[wikipedia:Stokes_flow|Stokes equation]],
  +
which models flow of an incompressible fluid in a domain.
  +
The associated partial differential equation system is given by:
  +
:<math>
  +
\begin{align}
  +
\frac{\partial v}{\partial t} &= \Delta v - \nabla p + f, \qquad (x,t) \in \Omega \times (0,T] \\
  +
0 &= \operatorname{div} v, \\
  +
v &= 0, \qquad \qquad \qquad \quad \; (x,t) \in \partial \Omega \times (0,T]
  +
\end{align}
  +
</math>
  +
with velocity variable <math>v(x,t)</math> and pressure variable <math>\rho(x,t)</math>,
  +
on a spatial domain <math>\Omega = [0,1] \times [0,1] \subset \mathbb{R}^2</math>,
  +
and an external forcing term <math>f</math>.
  +
The boundary conditions are no-slip.
   
  +
A finite difference discretization yields the descriptor system:
 
  +
:<math>
  +
\begin{align}
  +
\begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{v}_h(t) \\ 0 \end{pmatrix} &=
  +
\begin{bmatrix} A_{11} & A_{12} \\ A_{12}^\intercal & 0 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix} +
  +
\begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t) \\
  +
y(t)\quad & = \begin{bmatrix} C_1 \,\;&\;\, C_2 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix}
  +
\end{align}
  +
</math>
  +
The matrix <math>A_{11}</math> matrix is the discretized Laplace operator,
  +
while <math>A_{12}</math> corresponds to the discrete gradient and divergence operators.
  +
For this benchmark the compound discretization of the boundary values and external forcing <math>[B_1 \; B_2]^\intercal \in \mathbb{R}^{N \times 1}</math> is chosen (uniformly) randomly,
  +
whereas the output matrix <math>[C_1 \; C_2] \in \mathbb{R}^{1 \times N}</math> is set to:
  +
:<math>
  +
\begin{align}
  +
\begin{bmatrix} C_1 & C_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}.
  +
\end{align}
  +
</math>
   
 
==Origin==
 
==Origin==

Revision as of 10:08, 26 June 2019

Under Construction.png Note: This page has not been verified by our editors.

Description

This benchmark presents the two-dimensional instationary Stokes equation, which models flow of an incompressible fluid in a domain. The associated partial differential equation system is given by:


\begin{align}
 \frac{\partial v}{\partial t} &= \Delta v - \nabla p + f, \qquad (x,t) \in \Omega \times (0,T] \\
 0 &= \operatorname{div} v, \\
 v &= 0, \qquad \qquad \qquad \quad \; (x,t) \in \partial \Omega \times (0,T]
\end{align}

with velocity variable v(x,t) and pressure variable \rho(x,t), on a spatial domain \Omega = [0,1] \times [0,1] \subset \mathbb{R}^2, and an external forcing term f. The boundary conditions are no-slip.

A finite difference discretization yields the descriptor system:


\begin{align}
 \begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{v}_h(t) \\ 0 \end{pmatrix} &= 
 \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^\intercal & 0 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix} +
 \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t) \\
 y(t)\quad & = \begin{bmatrix} C_1 \,\;&\;\, C_2 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix}
\end{align}

The matrix A_{11} matrix is the discretized Laplace operator, while A_{12} corresponds to the discrete gradient and divergence operators. For this benchmark the compound discretization of the boundary values and external forcing [B_1 \; B_2]^\intercal \in \mathbb{R}^{N \times 1} is chosen (uniformly) randomly, whereas the output matrix [C_1 \; C_2] \in \mathbb{R}^{1 \times N} is set to:


\begin{align}
 \begin{bmatrix} C_1 & C_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}.
\end{align}

Origin

Data

Dimensions

Citation

References

Contact

Christian Himpe