Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Peek Inductor"

(Update benchmark data file links)
Line 33: Line 33:
 
</math>
 
</math>
   
and can be downloaded as [https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark/Peek%20inductor%20%2838891%29/files/fileinnercontentproxy.2010-02-08.4495319327 spiral_inductor_peec.tar.gz] (10.5 MB).
+
and can be downloaded as [https://www.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-dim1e3-spiral_inductor_peec.tar.gz PeekInductor-dim1e3-spiral_inductor_peec.tar.gz] (10.5 MB).
   
 
Short [[wikipedia:MATLAB|Matlab]] files to:
 
Short [[wikipedia:MATLAB|Matlab]] files to:
Line 41: Line 41:
 
* produce symmetrized standard state-space system: <math>\dot{x}(t) = A_{symm}x(t)+ B_{symm}u(t)</math>, <math>y(t) = B_{symm}^\intercal x(t)</math>, where <math>A_{symm}</math> is symmetric.
 
* produce symmetrized standard state-space system: <math>\dot{x}(t) = A_{symm}x(t)+ B_{symm}u(t)</math>, <math>y(t) = B_{symm}^\intercal x(t)</math>, where <math>A_{symm}</math> is symmetric.
   
can be found in [https://portal.uni-freiburg.de/imteksimulation/downloads/benchmark/Peek%20inductor%20%2838891%29/files/fileinnercontentproxy.2010-02-08.4591806366 plot_spiral.tar.gz]
+
can be found in [https://www.mpi-magdeburg.mpg.de/mpcsc/MORWIKI/Oberwolfach/PeekInductor-plot_spiral.tar.gz PeekInductor-plot_spiral.tar.gz]
   
 
==Dimensions==
 
==Dimensions==
Line 66: Line 66:
 
<ref name="korvink2005"> J.G. Korvink, E.B. Rudnyi, <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_11 Oberwolfach Benchmark Collection]</span>, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 311--315, 2005.</ref>
 
<ref name="korvink2005"> J.G. Korvink, E.B. Rudnyi, <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_11 Oberwolfach Benchmark Collection]</span>, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 311--315, 2005.</ref>
   
<ref name="li2005">J.R. Li, M. Kamon, <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_23PEEC Model of a Spiral Inductor Generated by Fasthenry]</span>. In: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol 45: 373--377, 2005.</ref>
+
<ref name="li2005">J.R. Li, M. Kamon, <span class="plainlinks">[https://doi.org/10.1007/3-540-27909-1_23 PEEC Model of a Spiral Inductor Generated by Fasthenry]</span>. In: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol 45: 373--377, 2005.</ref>
   
 
</references>
 
</references>

Revision as of 12:45, 17 July 2018

Under Construction.png Note: This page has not been verified by our editors.

Description: Spiral Inductor PEEC Model

Figure 1: Spiral inductor with part of overhanging copper plane

The description of the PEEC model of a spiral inductor can be found in LiKamon.pdf.

The complex impedance is:


Z(w) = Resis(w)+i*w*Induc(w) = G(i*w)^{-1}=(B^\intercal(-A+i*w*E)^{-1}B)^{-1}

A plots of Resis(w) can be found in Rspiral_skin.pdf and a plot of Induc(w) in Lspiral_skin.pdf.

Origin

This benchmark is part of the Oberwolfach Benchmark Collection[1]; No. 38891, see [2].

Data

The model is of order N=1434 and of the form:


\begin{array}{rcl}
E \dot{x}(t) &=& Ax(t) + Bu(t) \\
y(t) &=& B^\intercal x(t)
\end{array}

and can be downloaded as PeekInductor-dim1e3-spiral_inductor_peec.tar.gz (10.5 MB).

Short Matlab files to:

  • plot Resis(w) and Induc(w),
  • perform a PRIMA reduction of order 50,
  • produce symmetrized standard state-space system: \dot{x}(t) = A_{symm}x(t)+ B_{symm}u(t), y(t) = B_{symm}^\intercal x(t), where A_{symm} is symmetric.

can be found in PeekInductor-plot_spiral.tar.gz

Dimensions

System structure:


\begin{align}
E \dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= B^\intercal x(t)
\end{align}

System dimensions:

E \in \mathbb{R}^{1434 \times 1434}, A \in \mathbb{R}^{1434 \times 1434}, B \in \mathbb{R}^{1434 \times 1}.

References

  1. J.G. Korvink, E.B. Rudnyi, Oberwolfach Benchmark Collection, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 311--315, 2005.
  2. J.R. Li, M. Kamon, PEEC Model of a Spiral Inductor Generated by Fasthenry. In: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol 45: 373--377, 2005.