Line 71: | Line 71: | ||
d = zeros(n/2,1); |
d = zeros(n/2,1); |
||
− | aa(1:2:n-1,1) = a; |
+ | aa(1:2:n-1,1) = a; aa(2:2:n,1) = a; |
− | + | bb(1:2:n-1,1) = b; bb(2:2:n-2,1) = 0; |
|
− | |||
− | bb(1:2:n-1,1) = b; |
||
− | |||
− | bb(2:2:n-2,1) = 0; |
||
Ae = spdiags(aa,0,n,n); |
Ae = spdiags(aa,0,n,n); |
||
Line 85: | Line 81: | ||
B = 2*sparse(mod([1:n],2)).'; |
B = 2*sparse(mod([1:n],2)).'; |
||
− | C(1:2:n-1) = c.'; |
+ | C(1:2:n-1) = c.'; C(2:2:n) = d.'; C = sparse(C); |
− | |||
− | C(2:2:n) = d.'; |
||
− | |||
− | C = sparse(C); |
||
</tt> |
</tt> |
Revision as of 13:39, 29 November 2011
Introduction
On this page you will find a purely synthetic parametric model. The goal is to have a simple parametric model which one can use to experiment with different system orders, parameter values etc.
System description
The parameter scales the real part of the system poles, that is,
.
For a system in pole-residue form
we can write down the state-space realisation with
Notice that the system matrices have complex entries.
For simplicity, assume that is even,
, and that all system poles are complex and ordered in complex conjugate pairs, i.e.
and the residues also form complex conjugate pairs
Then a realization with matrices having real entries is given by
with ,
,
,
.
Numerical values
We construct a system of order . The numerical values for the different variables are
equally spaced in
,
equally spaced in
,
,
,
.
In MATLAB the system matrices are easily formed as follows
n = 100;
a = -linspace(1e1,1e3,n/2).';
b = linspace(1e1,1e3,n/2).';
c = ones(n/2,1);
d = zeros(n/2,1);
aa(1:2:n-1,1) = a; aa(2:2:n,1) = a;
bb(1:2:n-1,1) = b; bb(2:2:n-2,1) = 0;
Ae = spdiags(aa,0,n,n);
A0 = spdiags([0;bb],1,n,n)+spdiags(-bb,-1,n,n);
B = 2*sparse(mod([1:n],2)).';
C(1:2:n-1) = c.'; C(2:2:n) = d.'; C = sparse(C);