Line 35: | Line 35: | ||
− | :<math> A_\varepsilon = \left[\begin{array}{ccc} A_\varepsilon |
+ | :<math> A_\varepsilon = \left[\begin{array}{ccc} A_{\varepsilon,1} & & \\ & \ddots & \\ & & A_{\varepsilon,k}\end{array}\right], \quad A_0 = \left[\begin{array}{ccc} A_{0,1} & & \\ & \ddots & \\ & & A_{0,k}\end{array}\right], \quad B = \left[\begin{array}{c} B_1 \\ \vdots \\ B_k\end{array}\right], \quad C = \left[\begin{array}{ccc} C_1 & \cdots & C_k\end{array}\right], \quad D = 0,</math> |
− | with <math> |
+ | with <math> A_{\varepsilon,i} = \left[\begin{array}{cc} a_i& 0 \\ 0 & a_i \end{array}\right] </math>, |
− | + | <math> A_{0,i} = \left[\begin{array}{cc} 0& b_i \\ -b_i & 0 \end{array}\right] </math>, |
|
+ | <math> B_{i} = \left[\begin{array}{c} 2 \\ 0 \end{array}\right] </math>, |
||
+ | <math> C_{i} = \left[\begin{array}{cc} c_i& d_i\end{array}\right] </math>. |
||
== Numerical values == |
== Numerical values == |
Revision as of 13:30, 29 November 2011
Introduction
On this page you will find a purely synthetic parametric model. The goal is to have a simple parametric model which one can use to experiment with different system orders, parameter values etc.
System description
The parameter scales the real part of the system poles, that is,
.
For a system in pole-residue form
we can write down the state-space realisation with
Notice that the system matrices have complex entries.
For simplicity, assume that is even,
, and that all system poles are complex and ordered in complex conjugate pairs, i.e.
and the residues also form complex conjugate pairs
Then a realization with matrices having real entries is given by
with ,
,
,
.
Numerical values
We construct a system of order . The numerical values for the different variables are
,
equally spaced in
,
equally spaced in
,
.
In MATLAB the system matrices are easily formed as follows
n = 100;
a = -linspace(1e1,1e3,n/2);
b = linspace(1e1,1e3,n/2);