Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Flexible Space Structures"

(Init FSS Benchmark)
 
m (Fix tex errors)
Line 13: Line 13:
   
 
In modal form the '''flexible space structure''' model for <math>K</math> modes, <math>M</math> actuators and <math>Q</math> sensors is of second order and given by:
 
In modal form the '''flexible space structure''' model for <math>K</math> modes, <math>M</math> actuators and <math>Q</math> sensors is of second order and given by:
  +
:<math>
 
\ddot{\nu}(t) &= (2 \xi \circ \omega) \circ \dot{\nu}(t) + (\omega \circ \omega) \circ \nu = Bu(t) \\
+
:<math>\ddot{\nu}(t) = (2 \xi \circ \omega) \circ \dot{\nu}(t) + (\omega \circ \omega) \circ \nu = Bu(t)</math>
  +
y(t) &= C_r\dot{\nu}(t) + C_d\nu(t)
+
:<math>y(t) = C_r\dot{\nu}(t) + C_d\nu(t)</math>
</math>
 
  +
with the parameters <math>\xi \in \mathbb{R}_{>0}^K</math> (damping ratio), <math>\omega \in \mathbb{R}_{>0}^K</math> (natural frequency) and using the Hadamard product $\circ$.
+
with the parameters <math>\xi \in \mathbb{R}_{>0}^K</math> (damping ratio), <math>\omega \in \mathbb{R}_{>0}^K</math> (natural frequency) and using the Hadamard product <math>\circ</math>.
The first order representation follows for <math>x(t) = (\dot{nu}(t), \omega_1\nu_1, \dots, \omega_K\nu_K)</math> by:
+
The first order representation follows for <math>x(t) = (\dot{\nu}(t), \omega_1\nu_1, \dots, \omega_K\nu_K)</math> by:
:<math>
 
  +
\dot{x}(t) &= Ax(t) + Bu(t) \\
 
y(t) &= Cx(t)
+
:<math>\dot{x}(t) = Ax(t) + Bu(t) </math>
  +
</math>
 
  +
:<math>y(t) = Cx(t)</math>
  +
 
with the matrices:
 
with the matrices:
  +
:<math>
 
A := \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_K \end{pmatrix}, \\
+
:<math>A := \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_K \end{pmatrix}, \; B := \begin{pmatrix} B_1 \\ \vdots \\ B_K \end{pmatrix}, \; C := \begin{pmatrix} C_1 & \dots & C_K \end{pmatrix}, </math>
  +
B := \begin{pmatrix} B_1 \\ \vdots \\ B_K \end{pmatrix}, \\
 
C := \begin{pmatrix} C_1 & \dots & C_K \end{pmatrix},
 
</math>
 
 
and their components:
 
and their components:
  +
:<math>
 
A_k := \begin{pmatrix} -2\xi_k\omega_k & -\omega_k \\ \omega_k & 0 \end{pmatrix}, \\
+
:<math>A_k := \begin{pmatrix} -2\xi_k\omega_k & -\omega_k \\ \omega_k & 0 \end{pmatrix}, \; B_k := \begin{pmatrix} b_k \\ 0 \end{pmatrix}, \; C_k := \begin{pmatrix} c_{rk} & \frac{c_{dk}}{\omega_k} \end{pmatrix},</math>
  +
B_k := \begin{pmatrix} b_k \\ 0 \end{pmatrix}, \\
 
C_k := \begin{pmatrix} c_{rk} & \frac{c_{dk}}{\omega_k} \end{pmatrix},
 
</math>
 
 
where <math>b_k \in \mathbb{R}^{1 \times M}</math> and <math>c_{rk}, c_{dk} \in \mathbb{R}^{Q \times 1}</math>.
 
where <math>b_k \in \mathbb{R}^{1 \times M}</math> and <math>c_{rk}, c_{dk} \in \mathbb{R}^{Q \times 1}</math>.
   
Line 41: Line 39:
   
 
For this benchmark the system matrix is block diagonal and thus chosen to be sparse.
 
For this benchmark the system matrix is block diagonal and thus chosen to be sparse.
The parameters <math>\xi</math> and math>\omega</math> are sampled from a uniform random distributions <math>\mathcal{U}_[0,\frac{1}{1000}]}^K</math> and <math>\mathcal{U}_[0,100]}^K</math> respectively.
+
The parameters <math>\xi</math> and math>\omega</math> are sampled from a uniform random distributions <math>\mathcal{U}_{[0,\frac{1}{1000}]}^K</math> and <math>\mathcal{U}_{[0,100]}^K</math> respectively.
 
The components of the input matrix <math>b_k</math> are sampled form a uniform random distribution <math>\mathcal{U}_{[0,1]}</math>,
 
The components of the input matrix <math>b_k</math> are sampled form a uniform random distribution <math>\mathcal{U}_{[0,1]}</math>,
 
while the output matrix <math>C</math> is sampled from a uniform random distribution <math>\mathcal{U}^{}_[0,10]</math> completely w.l.o.g, since if the components of <math>C_d</math> are random their scaling can be ignored.
 
while the output matrix <math>C</math> is sampled from a uniform random distribution <math>\mathcal{U}^{}_[0,10]</math> completely w.l.o.g, since if the components of <math>C_d</math> are random their scaling can be ignored.

Revision as of 12:01, 11 May 2017

Under Construction.png Note: This page has not been verified by our editors.

Description

The flexible space structure benchmark[1] is a procedural modal model which represents structural dynamics with a selectable number actuators and sensors.

Model

In modal form the flexible space structure model for K modes, M actuators and Q sensors is of second order and given by:

\ddot{\nu}(t) = (2 \xi \circ \omega) \circ \dot{\nu}(t) + (\omega \circ \omega) \circ \nu = Bu(t)
y(t) = C_r\dot{\nu}(t) + C_d\nu(t)

with the parameters \xi \in \mathbb{R}_{>0}^K (damping ratio), \omega \in \mathbb{R}_{>0}^K (natural frequency) and using the Hadamard product \circ. The first order representation follows for x(t) = (\dot{\nu}(t), \omega_1\nu_1, \dots, \omega_K\nu_K) by:

\dot{x}(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

with the matrices:

A := \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_K \end{pmatrix}, \; B := \begin{pmatrix} B_1 \\ \vdots \\ B_K \end{pmatrix}, \; C := \begin{pmatrix} C_1 & \dots & C_K \end{pmatrix},

and their components:

A_k := \begin{pmatrix} -2\xi_k\omega_k & -\omega_k \\ \omega_k & 0 \end{pmatrix}, \; B_k := \begin{pmatrix} b_k \\ 0 \end{pmatrix}, \; C_k := \begin{pmatrix} c_{rk} & \frac{c_{dk}}{\omega_k} \end{pmatrix},

where b_k \in \mathbb{R}^{1 \times M} and c_{rk}, c_{dk} \in \mathbb{R}^{Q \times 1}.


Benchmark Specifics

For this benchmark the system matrix is block diagonal and thus chosen to be sparse. The parameters \xi and math>\omega</math> are sampled from a uniform random distributions \mathcal{U}_{[0,\frac{1}{1000}]}^K and \mathcal{U}_{[0,100]}^K respectively. The components of the input matrix b_k are sampled form a uniform random distribution \mathcal{U}_{[0,1]}, while the output matrix C is sampled from a uniform random distribution \mathcal{U}^{}_[0,10] completely w.l.o.g, since if the components of C_d are random their scaling can be ignored.


Data

The following Matlab code assembles the above described A, B and C matrix for a given number of modes K.

function [A,B,C] = fss(K,M,Q)

    rand('seed',1009);
    xi = rand(1,K)*0.001;	% Sample damping ratio
    omega = rand(1,K)*100;	% Sample natural frequencies

    A_k = cellfun(@(p) sparse([-2.0*p(1)*p(2),-p(2);p(2),0]), ...
                  num2cell([xi;omega],1),'UniformOutput',0);

    A = blkdiag(A_k{:});

    B = kron(rand(K,M),[1;0]);

    C = 10.0*rand(Q,2*K);
end


Reference

  1. W. Gawronski and T. Williams, "Model Reduction for Flexible Space Structures", Journal of Guidance 14(1): 68--76, 1991

Contact

Christian Himpe