Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Synthetic parametric model"

Line 5: Line 5:
 
== System description ==
 
== System description ==
   
The parameter <math>\varepsilon</math> scales the real part of the system poles, that is, <math>p_k=\varepsilon a_k+jb_k</math>.
+
The parameter <math>\varepsilon</math> scales the real part of the system poles, that is, <math>p_i=\varepsilon a_i+jb_i</math>.
If the system is in pole-residue form, then
+
For a system in pole-residue form
  +
   
 
<math> H(s) = \sum_{i=1}^{n}\frac{r_i}{s-p_i} = \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} ,</math>
 
<math> H(s) = \sum_{i=1}^{n}\frac{r_i}{s-p_i} = \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} ,</math>
   
  +
which has the state-space realisation
+
we can then write down the state-space realisation
  +
   
 
<math>\widehat{A} = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] = \varepsilon \widehat{A}_\varepsilon + \widehat{A}_0,</math>
 
<math>\widehat{A} = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] = \varepsilon \widehat{A}_\varepsilon + \widehat{A}_0,</math>
   
 
<math>\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.</math>
 
<math>\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.</math>
  +
  +
   
 
Notice that the system matrices have complex entries.
 
Notice that the system matrices have complex entries.
Line 20: Line 25:
 
For simplicity, assume that <math> n </math> is even, <math> n=2k </math>, and that all system poles are complex and ordered in complex conjugate pairs, i.e.
 
For simplicity, assume that <math> n </math> is even, <math> n=2k </math>, and that all system poles are complex and ordered in complex conjugate pairs, i.e.
   
<math> p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k. </math>
+
<math> p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k, </math>
   
Which also implies that the residues form complex conjugate pairs <math>r_1, \bar{r}_1,\ldots , r_k, \bar{r}_k.</math>
+
which also implies that the residues form complex conjugate pairs <math>r_1, \bar{r}_1,\ldots , r_k, \bar{r}_k.</math>
   
 
Then a realization with matrices having real entries is given by
 
Then a realization with matrices having real entries is given by
  +
   
 
<math> A = T\widehat{A}T^*, \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,</math>
 
<math> A = T\widehat{A}T^*, \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,</math>
   
  +
with
 
<math> T = \left[\begin{array}{ccc} T_0 & & \\ & \ddots & \\ & & T_0 \end{array}\right] </math>,
+
with <math> T = \left[\begin{array}{ccc} T_0 & & \\ & \ddots & \\ & & T_0 \end{array}\right] </math>,
 
for <math>T_0 = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -j\\ 1 & j \end{array}\right]</math>.
 
for <math>T_0 = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -j\\ 1 & j \end{array}\right]</math>.
   

Revision as of 14:50, 28 November 2011

Introduction

On this page you will find a purely synthetic parametric model. The goal is to have a simple parametric model which one can use to experiment with different system orders, parameter values etc.

System description

The parameter \varepsilon scales the real part of the system poles, that is, p_i=\varepsilon a_i+jb_i. For a system in pole-residue form


 H(s) =  \sum_{i=1}^{n}\frac{r_i}{s-p_i} =  \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} ,


we can then write down the state-space realisation


\widehat{A} = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] = \varepsilon \widehat{A}_\varepsilon + \widehat{A}_0,

\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.


Notice that the system matrices have complex entries.

For simplicity, assume that  n is even,  n=2k , and that all system poles are complex and ordered in complex conjugate pairs, i.e.

 p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k,

which also implies that the residues form complex conjugate pairs r_1, \bar{r}_1,\ldots , r_k, \bar{r}_k.

Then a realization with matrices having real entries is given by


 A = T\widehat{A}T^*, \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,


with  T = \left[\begin{array}{ccc} T_0 & & \\ & \ddots & \\ & & T_0 \end{array}\right] , for T_0 = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -j\\ 1 & j \end{array}\right].

Numerical values