Line 5: | Line 5: | ||
== System description == |
== System description == |
||
− | The parameter <math>\varepsilon</math> scales the real part of the system poles, that is, <math> |
+ | The parameter <math>\varepsilon</math> scales the real part of the system poles, that is, <math>p_i=\varepsilon a_i+jb_i</math>. |
− | + | For a system in pole-residue form |
|
+ | |||
<math> H(s) = \sum_{i=1}^{n}\frac{r_i}{s-p_i} = \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} ,</math> |
<math> H(s) = \sum_{i=1}^{n}\frac{r_i}{s-p_i} = \sum_{i=1}^{n}\frac{r_i}{s-(\varepsilon a_i+jb_i)} ,</math> |
||
+ | |||
− | + | we can then write down the state-space realisation |
|
+ | |||
<math>\widehat{A} = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] = \varepsilon \widehat{A}_\varepsilon + \widehat{A}_0,</math> |
<math>\widehat{A} = \varepsilon \left[\begin{array}{ccc} a_1 & & \\ & \ddots & \\ & & a_n\end{array}\right] +\left[\begin{array}{ccc} jb_1 & & \\ & \ddots & \\ & & jb_n\end{array}\right] = \varepsilon \widehat{A}_\varepsilon + \widehat{A}_0,</math> |
||
<math>\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.</math> |
<math>\widehat{B} = [1,\ldots,1]^T,\quad \widehat{C} = [r_1,\ldots,r_n],\quad D = 0.</math> |
||
+ | |||
+ | |||
Notice that the system matrices have complex entries. |
Notice that the system matrices have complex entries. |
||
Line 20: | Line 25: | ||
For simplicity, assume that <math> n </math> is even, <math> n=2k </math>, and that all system poles are complex and ordered in complex conjugate pairs, i.e. |
For simplicity, assume that <math> n </math> is even, <math> n=2k </math>, and that all system poles are complex and ordered in complex conjugate pairs, i.e. |
||
− | <math> p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k |
+ | <math> p_1 = \varepsilon a_1+jb_1, p_2 = \varepsilon a_1-jb_1, \ldots, p_{n-1} = \varepsilon a_k+jb_k, p_n = \varepsilon a_k-jb_k, </math> |
− | + | which also implies that the residues form complex conjugate pairs <math>r_1, \bar{r}_1,\ldots , r_k, \bar{r}_k.</math> |
|
Then a realization with matrices having real entries is given by |
Then a realization with matrices having real entries is given by |
||
+ | |||
<math> A = T\widehat{A}T^*, \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,</math> |
<math> A = T\widehat{A}T^*, \quad B = T\widehat{B}, \quad C = \widehat{C}T^*, \quad D = 0,</math> |
||
+ | |||
− | with |
||
− | <math> T = \left[\begin{array}{ccc} T_0 & & \\ & \ddots & \\ & & T_0 \end{array}\right] </math>, |
+ | with <math> T = \left[\begin{array}{ccc} T_0 & & \\ & \ddots & \\ & & T_0 \end{array}\right] </math>, |
for <math>T_0 = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -j\\ 1 & j \end{array}\right]</math>. |
for <math>T_0 = \frac{1}{\sqrt{2}}\left[\begin{array}{cc} 1 & -j\\ 1 & j \end{array}\right]</math>. |
||
Revision as of 14:50, 28 November 2011
Introduction
On this page you will find a purely synthetic parametric model. The goal is to have a simple parametric model which one can use to experiment with different system orders, parameter values etc.
System description
The parameter scales the real part of the system poles, that is,
.
For a system in pole-residue form
we can then write down the state-space realisation
Notice that the system matrices have complex entries.
For simplicity, assume that is even,
, and that all system poles are complex and ordered in complex conjugate pairs, i.e.
which also implies that the residues form complex conjugate pairs
Then a realization with matrices having real entries is given by
with ,
for
.