Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki

Difference between revisions of "Balanced Truncation"

m
m
Line 17: Line 17:
   
   
<math> (A,B,C,D)\Rightarrow (TAT^{-1},TB,CT^{-1},D)</math>
+
<math> (A,B,C,D)\Rightarrow (TAT^{-1},TB,CT^{-1},D)=\left (\begin{bmatrix}A_{11} & A_{12}\\ A_{21} & A_{22}\end{bmatrix},\begin{bmatrix}B_1\\B_2\end{bmatrix}\begin{bmatrix} C_1 &C_2 \end{bmatrix},D\right)</math>
  +
  +
The truncated reduced system is then given by
  +
  +
<math> (\hat{A},\hat{B},\hat{C},\hat{D})=(A_{11},B_1,C_1,D) </math>
  +
One computes it for example by the SR Method.
  +
First one computes the (Cholesky) factors of the gramians <math>P=S^TS, Q=R^TR</math>. Then we compute the singular value decomposition of <math> SR^T</math>
  +
  +
  +
<math> SR^T=\begin{bmatrix} U_1 U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & \\ & \Sigma_2\end{bmatrix}</math>
 
==References==
 
==References==

Revision as of 13:56, 25 March 2013


An important projection model reduction method which delivers high quality reduced models by making an extra effort in choosing the projection subspaces.


A stable system \Sigma , realized by (A,B,C,D) is called balanced, if the Gramians, i.e. the solutions P,Q of the Lyapunov equations

 AP+PA^T+BB^T=0,\quad A^TQ+QA+C^TC=0


satisfy  P=Q=diag(\sigma_1,\dots,\sigma_n) with  \sigma_1\geq\sigma_2\geq \dots\geq\sigma_n\geq0

The spectrum of  (PQ)^{\frac{1}{2}} which is \{\sigma_1,\dots,\sigma_n\} are the Hankel singular values.


In order to do balanced truncation one has to first compute a balanced realization via state-space transformation


 (A,B,C,D)\Rightarrow (TAT^{-1},TB,CT^{-1},D)=\left (\begin{bmatrix}A_{11} & A_{12}\\ A_{21} & A_{22}\end{bmatrix},\begin{bmatrix}B_1\\B_2\end{bmatrix}\begin{bmatrix} C_1 &C_2 \end{bmatrix},D\right)

The truncated reduced system is then given by

 (\hat{A},\hat{B},\hat{C},\hat{D})=(A_{11},B_1,C_1,D) One computes it for example by the SR Method. First one computes the (Cholesky) factors of the gramians P=S^TS, Q=R^TR. Then we compute the singular value decomposition of  SR^T


 SR^T=\begin{bmatrix} U_1 U_2 \end{bmatrix} \begin{bmatrix} \Sigma_1 & \\ & \Sigma_2\end{bmatrix}

References