m (Start of the page) |
|||
Line 4: | Line 4: | ||
− | A stable system <math> |
+ | A stable system <math>\Sigma</math> , realized by (A,B,C,D) is called balanced, if the Gramians, i.e. the solutions P,Q of the Lyapunov equations |
<math> AP+PA^T+BB^T=0,\quad A^TQ+QA+C^TC=0</math> |
<math> AP+PA^T+BB^T=0,\quad A^TQ+QA+C^TC=0</math> |
||
Line 10: | Line 10: | ||
satisfy <math> P=Q=diag(\sigma_1,\dots,\sigma_n)</math> with <math> \sigma_1\geq\sigma_2\geq \dots\geq\sigma_n\geq0</math> |
satisfy <math> P=Q=diag(\sigma_1,\dots,\sigma_n)</math> with <math> \sigma_1\geq\sigma_2\geq \dots\geq\sigma_n\geq0</math> |
||
+ | |||
+ | The spectrum of <math> (PQ)^{\frac{1}{2}}</math> which is <math>\{\sigma_1,\dots,\sigma_n\}</math> are the Hankel singular values. |
||
==References== |
==References== |
Revision as of 10:47, 25 March 2013
An important projection model reduction method which delivers high quality reduced models by making an extra effort in choosing the projection subspaces.
A stable system , realized by (A,B,C,D) is called balanced, if the Gramians, i.e. the solutions P,Q of the Lyapunov equations
satisfy with
The spectrum of which is
are the Hankel singular values.