DPA stands for the Dominant Pole Algorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out Modal truncation.
The following implementations are available at Joost Rommes' homepage.
- Subspace Accelerated Dominant Pole Algorithm (SADPA) for first order SISO systems [1][2] ,
- Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP) for first order MIMO systems [3][2],
- Subspace Accelerated Quadratic Dominant Pole Algorithm (SAQDPA) for second order SISO systems [4][2].
A extension of SAQDPA for second order MIMO systems is discussed in [2][5].
References
- ↑ J. Rommes and N. Martins, "Efficient computation of transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.3, pp.1218-1226, 2006
- ↑ 2.0 2.1 2.2 2.3 J. Rommes, "Methods for eigenvalue problems with applications in model order reduction", Ph.D. dissertation, Universiteit Utrecht, 2007.
- ↑ J. Rommes and N. Martins, "Efficient computation of multivariable transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.4, pp.1471-1483, 2006
- ↑ J. Rommes and N. Martins, "Computing transfer function dominant poles of large-scale second-order dynamical systems" SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.
- ↑ P. Benner, P. Kürschner, N. Truhar, Z. Tomljanović, "Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm", ZAMM, 96(5), pp. 604–619, 2016.