Anonymous
×
Create a new article
Write your page title here:
We currently have 105 articles on MOR Wiki. Type your article name above or click on one of the titles below and start writing!



MOR Wiki


DPA stands for the Dominant Pole Algorithm family. These algorithms can compute dominant poles (dominant eigenvalues and associated eigenvectors) of linear time-invariant system for carrying out Modal truncation.

The following implementations are available at Joost Rommes' homepage.

  • Subspace Accelerated Dominant Pole Algorithm (SADPA) for first order SISO systems [1][2] ,
  • Subspace Accelerated MIMO Dominant Pole Algorithm (SAMDP) for first order MIMO systems [3][2],
  • Subspace Accelerated Quadratic Dominant Pole Algorithm (SAQDPA) for second order SISO systems [4][2].

A extension of SAQDPA for second order MIMO systems is discussed in [2][5].

References

  1. J. Rommes and N. Martins, "Efficient computation of transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.3, pp.1218-1226, 2006
  2. 2.0 2.1 2.2 2.3 J. Rommes, "Methods for eigenvalue problems with applications in model order reduction", Ph.D. dissertation, Universiteit Utrecht, 2007.
  3. J. Rommes and N. Martins, "Efficient computation of multivariable transfer function dominant poles using subspace acceleration", IEEE Transactions on Power Systems, vol.21, no.4, pp.1471-1483, 2006
  4. J. Rommes and N. Martins, "Computing transfer function dominant poles of large-scale second-order dynamical systems" SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 2137–2157, 2008.
  5. P. Benner, P. Kürschner, N. Truhar, Z. Tomljanović, "Semi-active damping optimization of vibrational systems using the parametric dominant pole algorithm", ZAMM, 96(5), pp. 604–619, 2016.

Contact

Patrick Kürschner

Joost Rommesr