Note: This page has not been verified by our editors.
Description
This benchmark presents the two-dimensional instationary Stokes equation, which models flow of an incompressible fluid in a domain [1],[2],[3],[4],[5]. The associated partial differential equation system is given by: \[ \begin{align} \frac{\partial v}{\partial t} &= \Delta v - \nabla p + f, \qquad (x,t) \in \Omega \times (0,T] \\ 0 &= \operatorname{div} v, \\ v &= 0, \qquad \qquad \qquad \quad \; (x,t) \in \partial \Omega \times (0,T] \end{align} \] with velocity variable \(v(x,t)\) and pressure variable \(\rho(x,t)\), on a spatial domain \(\Omega = [0,1] \times [0,1] \subset \mathbb{R}^2\), and an external forcing term \(f\). The boundary conditions are no-slip.
A finite volume discretization on a uniform, staggered grid yields the descriptor system: \[ \begin{align} \begin{bmatrix} E_{11} & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{v}_h(t) \\ 0 \end{pmatrix} &= \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^\intercal & 0 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix} + \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} u(t) \\ y(t)\quad & = \begin{bmatrix} C_1 \,\;&\;\, C_2 \end{bmatrix} \begin{pmatrix} v_h(t) \\ \rho_h(t) \end{pmatrix} \end{align} \] The matrix \(A_{11}\) matrix is the discretized Laplace operator, while \(A_{12}\) corresponds to the discrete gradient and divergence operators. For this benchmark the compound discretization of the boundary values and external forcing \([B_1 \; B_2]^\intercal \in \mathbb{R}^{N \times 1}\) is chosen (uniformly) randomly, whereas the output matrix \([C_1 \; C_2] \in \mathbb{R}^{1 \times N}\) is set to: \[ \begin{align} \begin{bmatrix} C_1 & C_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}. \end{align} \]
Data
This is a procedural benchmark. A MATLAB m-file to generate \(E, A, B, C\) matrices can be found as part of the M.E.S.S project, under:
DEMOS/models/stokes/stokes_ind2.m
Dimensions
System structure:
\[ \begin{align} E \dot{x}(t) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) \end{align} \]
System dimensions\[E \in \mathbb{R}^{N \times N}\], \(A \in \mathbb{R}^{N \times N}\), \(B \in \mathbb{R}^{N \times 1}\), \(C \in \mathbb{R}^{1 \times N}\).
Citation
To cite this benchmark, use the following references:
- For the benchmark itself and its data:
- The MORwiki Community, Stokes equation. MORwiki - Model Order Reduction Wiki, 2018. https://modelreduction.org/morwiki/Stokes_equation
@MISC{morwiki_stokes,
author = {{The MORwiki Community}},
title = {Stokes equation},
howpublished = {{MORwiki} -- Model Order Reduction Wiki},
url = {https://modelreduction.org/morwiki/Stokes_equation},
year = {20XX}
}
- For the background on the benchmark:
@PHDTHESIS{Sch07,
author = {M.Schmidt},
title = {Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems},
school = {TU Berlin},
year = {2007},
doi = {10.14279/depositonce-1600}
}
References
- ↑ T. Stykel. Balanced truncation model reduction for descriptor systems, Proceedings in Applied Mathematics and Mechanics 3: 5--8, 2003.
- ↑ T. Stykel. Gramian-Based Model Reduction for Descriptor System, Mathematics of Control, Signals, and Systems 16(4): 297--319, 2004.
- ↑ V. Mehrmann, T. Stykel. Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form, Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, vol 45: 83--115, 2005.
- ↑ T. Stykel. Balanced Truncation model reduction for semidiscretized Stokes equation, Linear Algebra and its Application 415(2--3): 262--289, 2006.
- ↑ M.Schmidt. Systematic discretization of input/output maps and other contributions to the control of distributed parameter systems, Ph.D. thesis, TU Berlin, 2007.